Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 179-187, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100653

RESUMEN

Achieving accurate detection of different speciations of heavy metal ions (HMIs) in an aqueous solution is an urgent problem due to the different bioavailabilities and physiological toxicity. Herein, we nominated a novel strategy to detect HCrO4- and Cr(OH)2+ at a trace level via the electrochemical sensitive surface constructed by Co3O4-rGO modified with amino and carboxyl groups, which revealed that the interactions between distinct functional groups and different oxygen-containing groups of target ions are conducive to the susceptible and anti-interference detection. The detection sensitivities of 19.46 counts µg-1 L for HCrO4- and 13.44 counts µg-1 L for Cr(OH)2+ were obtained under optimal conditions, while the limits of detection were 0.10 and 0.12 µg L-1, respectively. Satisfactory anti-interference and actual water sample analysis results were obtained. A series of advanced optical techniques like X-ray photoelectron spectroscopy, X-ray absorption near-edge structure technology, and density functional theory calculations under an electric field demonstrated that chemical interactions between groups contribute more to the fixation of target ions than electrical attraction alone. The presence of oxygen-containing groups distinct from simple ionic forms was a critical factor in the selectivity and anti-interference detection. Furthermore, the valence cycle of Co(II)/(III) synergistically boosted the detection performance. This research provides a promising tactic from the microscopic perspective of groups' interactions to accomplish the precise speciation analysis of HMIs in the water environment.

2.
Chem Sci ; 14(36): 9678-9688, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736653

RESUMEN

Single-atom catalysts have been extensively utilized for electrocatalysis, in which electronic metal-support interactions are typically employed to stabilize single atoms. However, this neglects the metal-metal interactions of adjacent atoms, which are essential for the fine-tuning of selective sites. Herein, the high-loading of Ir single atoms (Ir SAs) (8.9 wt%) were adjacently accommodated into oxygen vacancy-rich Co3O4 nanosheets (Ir SAs/Co3O4). Electronic perturbations for both Ir single atoms and Co3O4 supports were observed under electronic metal-support and metal-metal interactions, thus generating Ir-O-Co/Ir units. Electrons were transferred from Co and Ir to O atoms, inducing the depletion of 3d/5d states in Co/Ir and the occupation of 2p states in O atoms to stabilize the Ir SAs. Moreover, the O atoms of Ir-O-Ir functioned as the main active sites for the electrocatalysis of As(iii), which reduced the energy barrier for the rate-determining step. This was due to the stronger electronic affinities for intermediates from reduction of As(iii), which were completely distinct from other coordinated O atoms of Co3O4 or IrO2. Consequently, the resultant Ir SAs/Co3O4 exhibited far more robust electrocatalytic activities than IrO2/Co3O4 and Co3O4 in the electrocatalysis of As(iii). Moreover, there was a strong orbital coupling effect between the coordinated O atoms of Ir SAs and the -OH of H3AsO3, thus exhibiting superior selectivity for As(iii) in contrast to other common heavy metal cations. This work offers useful insights into the rational design of intriguing SACs with high selectivity and stability for the electrocatalysis and electrochemical analysis of pollutants on an electronic level.

3.
Anal Chem ; 95(7): 3666-3674, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36656141

RESUMEN

Traditional nanomodified electrodes have made great achievements in electrochemical stripping voltammetry of sensing materials for As(III) detection. Moreover, the intermediate states are complicated to probe because of the ultrashort lifetime and complex reaction conditions of the electron transfer process in electroanalysis, which seriously hinder the identification of the actual active site. Herein, the intrinsic interaction of highly sensitive analytical behavior of nanomaterials is elucidated from the perspective of electronic structure through density functional theory (DFT) and gradient boosting regression (GBR). It is revealed that the atomic radius, d-band center (εd), and the largest coordinative TM-N bond length play a crucial role in regulating the arsenic reduction reaction (ARR) performance by the established ARR process for 27 sets of transition-metal single atoms supported on N-doped graphene. Furthermore, the database composed of filtered intrinsic electronic structural properties and the calculated descriptors of the central metal atom in TM-N4-Gra were also successfully extended to oxygen evolution reaction (OER) systems, which effectively verified the reliability of the whole approach. Generally, a multistep workflow is developed through GBR models combined with DFT for valid screening of sensing materials, which will effectively upgrade the traditional trial-and-error mode for electrochemical interface designing.

4.
Anal Chem ; 95(8): 4104-4112, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688529

RESUMEN

Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 µA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 µA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.

5.
Anal Chem ; 94(16): 6225-6233, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404584

RESUMEN

Interference among multiple heavy metal ions (HMIs) is a significant problem that must be solved in electroanalysis, which extremely restricts the practical popularization of electrochemical sensors. However, due to the limited exploration of the intrinsic mechanism, it is still difficult to confirm the influencing factors. In this work, a series of experimental and theoretical electroanalysis models have been established to investigate the electroanalysis results of Cu(II), Cd(II), As(III), and their mixtures, which were based on the simple structure and stable coordination of nickel single-atom catalysts. X-ray absorption spectroscopy and density functional theory calculations were used to reveal the underlying detection mechanism of the 50-fold boosting effect of Cu(II) on As(III) while Cd(II) inhibits As(III). Combining the application of the thermodynamic model and Fourier transform infrared reflection, the specific interaction of the nanomaterials and HMIs on the interface is considered to be the fundamental source of the interference. This work opens up a new way of thinking about utilizing the unique modes of interplay between nanomaterials and HMIs to achieve anti-interference intelligent electrodes in stripping analysis.


Asunto(s)
Metales Pesados , Materiales Inteligentes , Cadmio/química , Iones , Metales Pesados/química , Termodinámica
6.
Int J Biol Sci ; 17(15): 4305-4315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803499

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes. CD38 was initially identified as a lymphocyte surface antigen and then has been found to exist in a variety of cell types. Our previous studies showed that CD38-/- mice were resistant to high-fat diet (HFD)-induced obesity. However, the role and mechanism of CD38 in HFD-induced NAFLD is still unclear. Here, we reported that CD38-/- mice significantly alleviated HFD-induced hepatic steatosis. HFD or oleic acid (OA) remarkably increased the mRNA and protein expressions of CD38 in mouse hepatic tissues and primary hepatocytes or hepatic cell lines in vitro and in vivo, suggesting that CD38 might play a role in HFD-induced hepatic steatosis. We observed that CD38 deficiency markedly decreased HFD- or OA-induced the lipid accumulation and oxidative stress in CD38-/- livers or primary hepatocytes, respectively. In contrast, overexpression of CD38 in Hep1-6 cells aggravated OA-induced lipid accumulation and oxidative stress. Furthermore, CD38 deficiency markedly inhibited HFD- or OA-induced the expressions of NOX4, and increased the expression of PPARα, CPT1, ACOX1 and SOD2 in liver tissue and hepatocytes from CD38-/- mice, indicating that CD38 deficiency-mediated the enhancement of fatty acid oxidation and the inhibition of oxidative stress contributed to protecting NAFLD. More importantly, Ex527 (Sirt1 inhibitor) and 3-TYP (Sirt3 inhibitor) significantly enhanced OA-induced lipid accumulation and oxidative stress in CD38-/- primary hepatocytes, suggesting that the anti-lipid accumulation of CD38 deficiency might be dependent on NAD/Sirtuins-mediated enhancement of FAA ß-oxidation and suppression of oxidative stress in hepatocytes. In conclusion, we demonstrated that CD38 deficiency protected mice from HFD-induced NAFLD by reducing lipid accumulation and suppressing oxidative stress via activating NAD/Sirtuins signaling pathways.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Sirtuinas/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , NAD/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Estrés Oxidativo , Transducción de Señal , Sirtuinas/genética
7.
Cell Physiol Biochem ; 48(6): 2350-2363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30114710

RESUMEN

BACKGROUND/AIMS: Previous studies showed that CD38 deficiency protected heart from ischemia/reperfusion injury and high fat diet (HFD)-induced obesity in mice. However, the role of CD38 in HFD-induced heart injury remains unclear. In the present study, we have investigated the effects and mechanisms of CD38 deficiency on HFD-induced heart injury. METHODS: The metabolites in heart from wild type (WT) and CD38 knockout (CD38-/-) mice were examined using metabolomics analysis. Cell viability, lactate hydrogenase (LDH) release, super oxide dismutase (SOD) activity, reactive oxygen species (ROS) production, triglyceride concentration and gene expression were examined by biochemical analysis and QPCR. RESULTS: Our results revealed that CD38 deficiency significantly elevated the intracellular glutathione (GSH) concentration and GSH/GSSG ratio, decreased the contents of free fatty acids and increased intracellular NAD+ level in heart from CD38-/- mice fed with HFD. In addition, in vitro knockdown of CD38 significantly attenuated OA-induced cellular injury, ROS production and lipid synthesis. Furthermore, the expression of mitochondrial deacetylase Sirt3 as well as its target genes FOXO3 and SOD2 were markedly upregulated in the H9C2 cell lines after OA stimulation. In contrast, the expressions of NOX2 and NOX4 were significantly decreased in the cells after OA stimulation. CONCLUSION: Our results demonstrated that CD38 deficiency protected heart from HFD-induced oxidative stress via activating Sirt3/FOXO3-mediated anti-oxidative stress pathway.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , Dieta Alta en Grasa , Proteína Forkhead Box O3/metabolismo , Glicoproteínas de Membrana/genética , Estrés Oxidativo , Sirtuina 3/metabolismo , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Línea Celular , Glutatión/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo
8.
Huan Jing Ke Xue ; 39(7): 3057-3066, 2018 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-29962126

RESUMEN

A three-wavelength photoacoustic soot spectrometer (PASS-3) was employed for real-time online measurement of aerosol optical properties and light absorption enhancement of EC together with chemical composition analysis in the northern suburb of Nanjing during January 1-19, 2016. The average aerosol absorption coefficient, scattering coefficient, and single scattering albedo at 532 nm during the observation period were (64.19±35.28) Mm-1, (454.68±238.71) Mm-1, and 0.87±0.03, respectively, and showed clear diurnal variation, mainly affected by planetary boundary layer height and PM2.5 mass concentration. The mass absorption cross section (MAC) showed an increasing trend during the observation period, consistent with the trend of variation in ratios between non-EC and EC components, resulting from the difference in relative percentage of secondary materials and coating thickness under different pollution conditions. The estimated light absorption enhancement, denoted EMAC, was calculated based on the change in MAC. The campaign-averaged EMAC at 405, 532, and 781 nm were 1.53±0.56, 1.34±0.47, and 1.14±0.40, respectively, showing a decrease with increasing wavelength, suggesting the contribution of brown carbon (BrC). All non-EC components showed linear correlation with EMAC, with the most significant correlation between OC/EC and EMAC, indicating that an increase in organics was likely the main contributor to light absorption enhancement in our study. In addition, the high correlation of K+/EC and EMAC revealed the contribution of biomass burning.

9.
J Cell Mol Med ; 22(1): 101-110, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28816006

RESUMEN

It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38-deficient mice were resistant to high-fat diet (HFD)-induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38-/- and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38-/- mice, 3T3-L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD-fed mice or the MEFs, 3T3-L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38-/- male mice were significantly resistant to HFD-induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3-L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD-fed CD38-/- mice and CD38-/- MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38-/- MEFs. Finally, the CD38 deficiency-mediated activations of Sirt1 signalling were up-regulated or down-regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ-FASN signalling pathway during the development of obesity.


Asunto(s)
ADP-Ribosil Ciclasa 1/deficiencia , Adipogénesis , Tejido Adiposo/metabolismo , Lipogénesis , PPAR gamma/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Adipocitos/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Ratones , NAD/metabolismo
10.
Lipids Health Dis ; 16(1): 82, 2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449683

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease is one of the most common liver diseases in the world and is a typical hepatic manifestation of metabolic syndrome which is characterized with lipid accumulation in liver. Nicotinamide phosphoribosyltransferase (NAMPT) has been recently identified as an enzyme involved in nicotinamide adenine dinucleotide (NAD+) biosynthesis and plays an important role in cellular metabolism in variety of organs in mammals. The aim of this study was to investigate the effects of NAMPT on high fat diet-induced hepatic steatosis. METHODS: Hepatic steatosis model was induced by high fat diet (HFD) in C57BL/6 mice in vivo. HepG2 and Hep1-6 hepatocytes were transfected with NAMPT vector plasmid or treated with NAMPT inhibitor FK866 and then incubated with oleic acid. Lipids accumulation was examined by HE staining or oil red staining. Quantitative RT-PCR and Western blot were used to measure expressions of the genes involved in lipogenic synthesis. RESULTS: FK866 significantly promoted liver steatosis in the mice fed with HFD and hepatic lipid accumulation in vitro, accompanied by the increases of the expressions of lipogenic genes such as sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN). Nicotinamide mononucleotide (NMN) and NAD+ significantly rescued the actions of FK866 in vitro. In contrast, overexpression of NAMPT in HepG2 and Hep1-6 hepatocytes ameliorated hepatic lipid accumulation. In addition, FK866 decreased the protein levels of Sirt1 and phospho-AMPKα in liver of the HFD fed mice. Furthermore, Resveratrol, a Sirt1 activator, significantly reduced lipogenic gene expressions, while EX-527, a Sirt1 specific inhibitor, had the opposite effects. CONCLUSION: Our results demonstrated that inhibition of NAMPT aggravated the HFD- or oleic acid-induced hepatic steatosis through suppressing Sirt1-mediated signaling pathway. On the one hand, the inhibition of NAMPT reduced the production of NAD+ through inhibiting the NAD+ salvage pathway, resulting in the decrease of Sirt1 activity, and then attenuated the deacetylation of SREBP1 in which the inhibition of SREBP1 activity promoted the expressions of FASN and ACC. On the other hand, the reduced Sirt1 activity alleviated the activation of AMPKα to further enhance SREBP1 activities.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Citocinas/genética , Hígado/enzimología , Nicotinamida Fosforribosiltransferasa/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Sirtuina 1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acrilamidas/farmacología , Animales , Carbazoles/farmacología , Línea Celular , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/farmacología , Mononucleótido de Nicotinamida/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Oléico/farmacología , Piperidinas/farmacología , Resveratrol , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Estilbenos/farmacología
11.
Talanta ; 148: 285-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26653451

RESUMEN

A new diffusive gradients in thin films (DGT) device, using Pb(II) ion-imprinted silica (IIS) as the binding agents and commercial cellulose acetate dialysis (CAD) membrane as the diffusion layer (CAD/IIS-DGT), has been developed and evaluated for sampling and measurement of free Pb(II) species. The CAD/IIS-DGT devices were successfully applied to the measurement of free Pb(II) species in synthetic solutions, in natural freshwaters and in industrial wastewaters. The CAD/IIS-DGT provides reliable results over pH range of 4.5-6.5 and a wide range of ionic strength from 1.0×10(-3) to 0.7 mol L(-1). The concentrations of the free Pb(II) species in synthetic solution containing different concentrations of ligands measured by CAD/IIS-DGT showed a good agreement with the value measured by Pb-ion selective electrode. Field deployments of the CAD/IIS-DGT devices allowed accurate measurements of the concentrations of free Pb(II) species.


Asunto(s)
Plomo/análisis , Impresión Molecular/métodos , Dióxido de Silicio/química , Adsorción , Difusión , Electroforesis en Acetato de Celulosa/métodos
12.
Anal Chim Acta ; 897: 24-33, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26515002

RESUMEN

A diffusive gradients in thin films (DGT) device for the analysis of free Cd(II) species, based on Cd(II) ion-imprinted sorbent (IIS) as the binding agents and commercial polyethersulfone membrane (PES) as diffusion layer, was developed (PES/IIS-DGT). DGT time-series experiments showed that the mass of free Cd(II) species accumulated by PES/IIS-DGT was linear vs. time (R(2) = 0.9953) and the concentration of free Cd(II) species by PES/IIS-DGT was in good agreement with the total dissolved concentrations of free Cd(II) species in simple synthetic solutions where free ionic species dominated. PES/IIS-DGT performance was independent in the range of pH 4.5-7.5 and ionic strength range from 1.0 × 10(-3) to 0.7 mol L(-1). The measurement of free Cd(II) species in synthetic solution containing different concentrations of ligands by PES/IIS-DGT showed an excellent agreement with the value measured by Cd(II) ion selective electrodes (Cd-ISE), indicating that PES/IIS-DGT method is more suitable than Cd-ISE for the measurement of low concentration of free Cd(II) species due to the enrichment of IIS for the analytes.


Asunto(s)
Cadmio/análisis , Difusión , Impresión Molecular , Contaminantes Químicos del Agua/química , Adsorción
13.
Pain Med ; 15(4): 637-46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24716590

RESUMEN

OBJECTIVE: To establish a rat model of type II diabetic neuropathic pain. METHODS: Sixty Sprague Dawley rats were randomly divided into two groups: group A (N = 10) was fed a normal diet, and group B (N = 50) was fed a high-fat and high-sugar diet. After 8 weeks, the body weight of all rats was recorded, and rats in both groups had their fasting plasma glucose, insulin concentration, and insulin sensitivity index measured and calculated. Subsequently, the rats in group B were randomly divided into three subgroups that were each given different doses of streptozotocin (STZ) by a single intraperitoneal injection (subgroup B1 received 30 mg/kg, subgroup B2 received 35 mg/kg, and subgroup B3 40 mg/kg). Two weeks after the STZ injection, the four groups of rats had their insulin sensitivity index, mechanical withdrawal threshold, and thermal withdrawal latency assessed, allowing us to establish a rat model of type II diabetic neuropathic pain and to determine the optimum dose of STZ. Four weeks after STZ injection (2 weeks after the model was established), the pain threshold was measured in the rats in group A and the group treated with the most effective STZ dose. We also measured the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated cyclic AMP response element-binding protein (p-CREB), and phosphorylated N-methyl d-aspartate receptor subtype B (p-NR2B) in the dorsal root ganglion (DRG) and spinal cord dorsal horn regions, which are closely related to neuropathic pain, and also recorded the TTX-R sodium currents in the acutely isolated DRG neurons. RESULTS: After 8 weeks of a high-fat, high-sugar diet, the body weight of the rats in group B was significantly increased. Although the fasting blood glucose levels did not change significantly, the fasting insulin levels were slightly elevated, and the insulin sensitivity index was significantly reduced. Two weeks after STZ injection, the blood glucose levels of the rats in subgroup B1 were elevated but did not remain so for a prolonged period. In contrast, the rats in subgroup B3 had elevated blood glucose that was accompanied by a high mortality rate, while the blood glucose levels of the rats in subgroup B2 were moderately elevated and relatively stable. In addition, the pain threshold was significantly decreased (P < 0.05), and the mortality was low in this group. Because of this, the dose of STZ that was used in group B2 was considered the most effective dose of STZ for induction of diabetes. Four weeks after STZ injection, the pain threshold in the rats of group B2 was still significantly decreased, and the expression of p-ERK, p-CREB, and p-NR2B in the dorsal root ganglion (DRG) and spinal cord dorsal horn was significantly increased. The tetrodotoxin-resistant sodium current density in DRG neurons was also significantly elevated (P < 0.05). CONCLUSIONS: A rat model of type II diabetic neuropathic pain can be established by feeding rats a high-fat, high-sugar diet for 8 weeks, in combination with intraperitoneal injection of 35 mg/kg STZ. This model can be stably maintained for at least 2 weeks.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Neuropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ganglios Espinales/fisiopatología , Médula Espinal/fisiopatología , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Ganglios Espinales/metabolismo , Masculino , Umbral del Dolor/fisiología , Técnicas de Placa-Clamp , Distribución Aleatoria , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...