Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Environ Sci Technol ; 58(18): 7924-7936, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652049

RESUMEN

Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.


Asunto(s)
Aerosoles , Oxidación-Reducción , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Luz
2.
J Neuroimmune Pharmacol ; 19(1): 4, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305948

RESUMEN

Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.


Asunto(s)
Depresión , Lipopolisacáridos , Animales , Ratas , Depresión/inducido químicamente , Hipocampo , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Músculos/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38414718

RESUMEN

Purpose: The study comprehensively evaluated the prognostic roles of the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), basophil-to-lymphocyte ratio (BLR), and eosinophil-to-lymphocyte ratio (ELR) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Patients and Methods: Six hundred and nineteen patients with AECOPD and 300 healthy volunteers were retrospectively included into the study. The clinical characteristics of the patients with AECOPD and the complete blood counts (CBCs) of the healthy volunteers were collected. The associations of PLR, NLR, MLR, BLR, and ELR with airflow limitation, hospital length of stay (LOS), C-reactive protein (CRP), and in-hospital mortality in patients with AECOPD were analyzed. Results: Compared with the healthy volunteers, PLR, NLR, MLR, BLR, and ELR were all elevated in COPD patients under stable condition. PLR, NLR, MLR, and BLR were further elevated while ELR was lowered during exacerbation. In the patients with AECOPD, PLR, NLR, and MLR were positively correlated with hospital LOS as well as CRP. In contrast, ELR was negatively correlated with hospital LOS as well as CRP. Elevated PLR, NLR, and MLR were all associated with more severe airflow limitation in AECOPD. Elevated PLR, NLR, and MLR were all associated with increased in-hospital mortality while elevated ELR was associated with decreased in-hospital mortality. Binary logistic regression analysis showed that smoking history, FEV1% predicted, pneumonia, pulmonary heart disease (PHD), uric acid (UA), albumin, and MLR were significant independent predictors ofin-hospital mortality. These predictors along with ELR were used to construct a nomogram for predicting in-hospital mortality in AECOPD. The nomogram had a C-index of 0.850 (95% CI: 0.799-0.901), and the calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) further demonstrated its good predictive value and clinical applicability. Conclusion: In summary, PLR, NLR, MLR, and ELR served as useful biomarkers in patients with AECOPD.


Asunto(s)
Neutrófilos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Monocitos , Eosinófilos , Estudios Retrospectivos , Linfocitos , Biomarcadores , Pronóstico , Proteína C-Reactiva/análisis
4.
Environ Sci Technol ; 58(2): 1236-1243, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38169373

RESUMEN

Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Piruvaldehído/química , Fotoquímica , Carbono , Aerosoles/análisis , Aminas , Glioxal , Agua/química , Concentración de Iones de Hidrógeno
5.
AIDS Res Ther ; 21(1): 8, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297382

RESUMEN

BACKGROUND: Studies on antiretroviral therapy (ART) in children living with HIV (CLHIV) are limited due to the small population and low accession rate of ART. METHODS: All 0-14-year-old CLHIV admitted to the Ganzhou Center for Disease Control and Prevention from January 2006 to June 2023 were included retrospectively. The information of treatment regimens, disease progression, and laboratory tests of the patients under ART were used to explore the outcomes and impacts of long-term ART. The normality of all the data was tested by the Shapiro-Wilk test. RESULTS: From 2006 to 2023, 18 CLHIV were reported in Ganzhou. Among them, 11 received ART and were followed up for 60.0 ± 48.4 months. After receiving ART, the median viral load of them decreased from 89,600 copies/ml to 22 copies/ml (P = 0.007), the median CD4+ T cell count increased from 380.7 cells/µL to 661.9 cells/µL (P = 0.028), and the median CD8+ T cell count decreased from 1065.8 cells/µL to 983.3 cells/µL (P = 0.584). The laboratory test results regarding liver function, renal function, blood cell count, and glucolipid metabolism tended to be within normal reference ranges, and the mean height-for-age z-score and weight-for-age z-score increased. However, all the three CLHIV who received cotrimoxazole developed pneumocystis carinii pneumonia, upper respiratory infection, skin lesions, bacterial pneumonia and/or thrush; the mean body-mass-index-for-age z-score decreased from 0.52 to -0.63. CONCLUSION: For CLHIV, ART could effectively inhibit the replication of HIV and improve the immune function of patients. More studies that focus on ART in CLHIV are urgently needed.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Niño , Humanos , Recién Nacido , Lactante , Preescolar , Adolescente , Infecciones por VIH/epidemiología , Estudios Retrospectivos , Antirretrovirales/uso terapéutico , Progresión de la Enfermedad , Recuento de Linfocito CD4 , China/epidemiología , Carga Viral , Fármacos Anti-VIH/uso terapéutico
6.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37910803

RESUMEN

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

7.
Environ Sci Technol ; 57(33): 12351-12361, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37542457

RESUMEN

Aqueous-phase reactions of α-dicarbonyls with ammonium or amines have been identified as important sources of secondary brown carbon (BrC). However, the identities of most chromophores in these reactions and the effects of pH remain largely unknown. In this study, the chemical structures, formation pathways, and optical properties of individual BrC chromophores formed through aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or methylamine at different pH's were characterized in detail by liquid chromatography-photodiode array-high resolution tandem mass spectrometry. In total, 180 chromophores are identified, accounting for 29-79% of the light absorption of bulk BrC for different reactions. Thereinto, 155 newly identified chromophores, including 76 imidazoles, 57 pyrroles, 10 pyrazines, 9 pyridines, and 3 imidazole-pyrroles, explain additionally 9-69% of the light absorption, and these chromophores mainly involve four formation pathways, including previously unrecognized reactions of ammonia or methylamine with the methylglyoxal dimer for the formation of pyrroles. The pH in these reactions also shows remarkable effects on the formation and transformation of BrC chromophores; e.g., with the increase of pH from 5.0 to 7.0, the light absorption contributions of imidazoles in identified chromophores decrease from 72% to 65%, while the light absorption contributions of pyrazines increase from 5% to 13% for the methylglyoxal + ammonium reaction; meanwhile, more small nitrogen heterocycles transformed into oligomers (e.g., C9 and C12 pyrroles) via reaction with methylglyoxal. These newly identified chromophores and proposed formation pathways are instructive for future field studies of the formation and transformation of aqueous-phase BrC.


Asunto(s)
Aminas , Compuestos de Amonio , Piruvaldehído/química , Carbono , Aerosoles/análisis , Agua/química , Metilaminas , Pirroles
8.
Environ Sci Technol ; 57(20): 7764-7776, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37155674

RESUMEN

Oxygenated organic molecules (OOMs) are critical intermediates linking volatile organic compound oxidation and secondary organic aerosol (SOA) formation. Yet, the understanding of OOM components, formation mechanism, and impacts are still limited, especially for urbanized regions with a cocktail of anthropogenic emissions. Herein, ambient measurements of OOMs were conducted at a regional background site in South China in 2018. The molecular characteristics of OOMs revealed dominant nitrogen-containing products, and the influences of different factors on OOM composition and oxidation state were elucidated. Positive matrix factorization analysis resolved the complex OOM species to factors featured with fingerprint species from different oxidation pathways. A new method was developed to identify the key functional groups of OOMs, which successfully classified the majority species into carbonyls (8%), hydroperoxides (7%), nitrates (17%), peroxyl nitrates (10%), dinitrates (13%), aromatic ring-retaining species (6%), and terpenes (7%). The volatility estimation of OOMs was improved based on their identified functional groups and was used to simulate the aerosol growth process contributed by the condensation of those low-volatile OOMs. The results demonstrate the predominant role of OOMs in contributing sub-100 nm particle growth and SOA formation and highlight the importance of dinitrates and anthropogenic products from multistep oxidation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Hong Kong , Nitratos , Terpenos , Aerosoles/análisis
9.
Ying Yong Sheng Tai Xue Bao ; 34(4): 913-920, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37078308

RESUMEN

Understanding the effects of different tillage practices on functional microbial abundance and composition in nitrogen (N), phosphorus (P) and sulfur (S) cycles are essential for the sustainable utilization of black soils. Based on an 8-year field experiment located in Changchun, Jilin Province, we analyzed the abundance and composition of N, P and S cycling microorganisms and their driving factors in different depths of black soil under no til-lage (NT) and conventional tillage (CT). Results showed that compared with CT, NT significantly increased soil water content (WC) and microbial biomass carbon (MBC) at soil depth of 0-20 cm. Compared with CT, NT significantly increased the abundances of functional and encoding genes related to N, P and S cycling, including the nosZ gene encoding N2O reductase, the ureC gene performing organic nitrogen ammoniation, the nifH gene encoding nitrogenase ferritin, the functional genes phnK and phoD driving organic phosphorus mineralization, the encoding pyrroloquinoline quinone synthase ppqC gene and the encoding exopolyphosphate esterase ppX gene, and the soxY and yedZ genes driving sulfur oxidation. The results of variation partitioning analysis and redundancy analysis showed that soil basic properties were the main factors affecting the microbial composition of N, P and S cycle functions (the total interpretation rate was 28.1%), and that MBC and WC were the most important drivers of the functional potential of soil microorganisms in N, P and S cycling. Overall, long-term no tillage could increase the abundance of functional genes of soil microorganisms by affecting soil environment. From the perspective of molecular biology, our results elucidated that no tillage could be used as an effective soil management measure to improve soil health and maintain green agricultural development.


Asunto(s)
Nitrógeno , Suelo , Azufre , Agricultura/métodos , Carbono , Fósforo , Suelo/química , Microbiología del Suelo
10.
Environ Sci Technol ; 57(1): 64-75, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36516990

RESUMEN

Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ozono/análisis , Monitoreo del Ambiente , Nitrógeno/análisis
11.
Ren Fail ; 44(1): 1558-1567, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36154556

RESUMEN

OBJECTIVE: To predict the risk factors for cardiovascular events within 5 years in patients with peritoneal dialysis-associated peritonitis and establish a nomogram for clinical prediction. METHODS: A prediction model was established by conducting an observational study in 150 patients with peritoneal dialysis-associated peritonitis obtained from the Information Database of AnHui Medical University Affiliated Hospital. The nomogram was constructed using the multivariate COX regression model. The C-index and the calibration plot were used to assess the discrimination and calibration of the prediction model. RESULTS: The elderly [HR = 2.453 (1.071-5.619)], history of cardiovascular events [HR = 2.296 (1.220-4.321)], alkaline phosphatase [HR = 1.004 (1.002-1.005)] and culture-positive [HR= 2.173 (1.009-4.682)] were identified as risk predictors of cardiovascular events, while serum albumin [HR = 0.396(0.170-0.924)] was identified as protective predictors of cardiovascular events. Combined with clinical studies, we constructed a nomogram based on the minimum value of the Akaike Information Criterion or Bayesian Information Criterion. The C index of the nomogram is 0.732, revealing great discrimination and appropriate calibration. Through the total score of the nomogram and the result of ROC, we classify patients into high-risk groups (cardiovascular events group) and low-risk groups (no cardiovascular events group). Cardiovascular events were significantly different for patients in the high-risk group compared to the low-risk group (HR = 3.862(2.202-6.772; p < 0.001). CONCLUSIONS: The current novel nomogram can accurately predict cardiovascular events in patients with peritonitis associated with peritoneal dialysis. However, external validation is required before the model can be used in clinic settings.


Asunto(s)
Diálisis Peritoneal , Peritonitis , Anciano , Fosfatasa Alcalina , Teorema de Bayes , Humanos , Nomogramas , Diálisis Peritoneal/efectos adversos , Peritonitis/diagnóstico , Peritonitis/epidemiología , Peritonitis/etiología , Estudios Retrospectivos , Albúmina Sérica
12.
Sci Total Environ ; 853: 158347, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36041601

RESUMEN

High particulate matter (PM) pollution episodes still occur occasionally in urban China, despite of improvements in recent years. Investigating the influencing factors of high-PM episodes is beneficial in the formulation of effective control measures. We herein present the effects of weather condition, emission source, and chemical conversion on the occurrence of high-PM episodes in urban Shanghai using multiple online measurements. Three high-PM episodes, i.e., locally-accumulated, regionally-transported, and dust-affected ones, as well as a clean period were selected. Stagnant air with temperature inversion was found in both locally-accumulated and regionally-transported high-PM episodes, but differences in PM evolution were observed. In the more complicated dust-affected episode, the weather condition interacted with the emission/transport sources and chemical conversion, resulting in consecutive stages with different PM characteristics. Specifically, there were (1) stronger local accumulation in the pre-dust period, (2) dust-laden air with aged organic aerosol (OA) upon dust arrival, (3) pollutants being swept into the ocean, and (4) back to the city with aged OA. Our results suggest that (a) local emissions could be rapidly oxidized in some episodes but not all, (b) aged OA from long-range transport (aged in space) had a similar degree of oxygenation compared to the prolonged local oxidation (aged in time), and (c) OA aged over land and over the ocean were similar in chemical characteristics. The findings help better understand the causes and evolution of high-PM episodes, which are manifested by the interplays among meteorology, source, and chemistry, providing a scientific basis for control measures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Material Particulado/análisis , Meteorología , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China , Aerosoles/análisis , Polvo/análisis , Contaminación del Aire/análisis
13.
Zhongguo Zhen Jiu ; 42(8): 899-906, 2022 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-35938333

RESUMEN

OBJECTIVE: To observe the clinical effect of moxibustion with deqi on Alzheimer's disease (AD) rats, and evaluate its effect on ß-amyloid (Aß) transport and enzymatic degradation proteins, to explore its molecular mechanism for improving cognitive function. METHODS: Sixty SPF-grade male SD rats were randomly divided into a blank group (8 rats), a sham-operation group (8 rats) and a model establishment group (44 rats). The rats in the model establishment group were injected with Aß1-42 at bilateral ventricles to establish AD model. Among the 38 rats with successful model establishment, 8 rats were randomly selected as the model group, and the remaining rats were treated with mild moxibustion at "Dazhui" (GV 14), once a day, 40 min each time, for 28 days. According to whether deqi appeared and the occurrence time of deqi, the rats were divided into a deqi group (12 rats), a delayed deqi group (10 rats) and a non-deqi group (8 rats). After the intervention, the Morris water maze test was applied to evaluate the cognitive function; the HE staining was applied to observe the brain morphology; the Western blot method was applied to measure the protein expression of Aß and its receptor mediated transport [low-density lipoprotein receptor-related protein (LRP) 1, receptor for advanced glycation end products (RAGE), apolipoprotein E (ApoE)] and enzymatic degradation [neprilysin (NEP), insulin degrading enzyme (IDE), endothelin converting enzyme (ECE)-1 and angiotensin converting enzyme (ACE) 2]. RESULTS: Compared with the sham-operation group, in the model group, the escape latency was prolonged (P<0.01), and the times of platform crossing and the ratio of platform quadrant to total time were reduced (P<0.01); the brain tissue was seriously damaged; the expression of hippocampal Aß and RAGE was increased (P<0.01), and the expression of hippocampal LRP1, ApoE, NEP, IDE, ECE-1 and ACE2 was decreased (P<0.01). Compared with the model group, the escape latency was shortened in the deqi group (P<0.05, P<0.01), and the escape latency in the delayed deqi group and the non-deqi group was shortened from Day 2 to Day 5 (P<0.05, P<0.01), and the times of platform crossing and the ratio of platform quadrant to total time were increased in the deqi group and the delayed deqi group (P<0.01, P<0.05); the brain damage in each moxibustion group was reduced, which was smallest in the deqi group, followed by the delayed deqi group and the non-deqi group; the expression of Aß and RAGE was decreased (P<0.01, P<0.05) and the expression of LRP1 and IDE was increased in each moxibustion group (P<0.01, P<0.05); the expression of ApoE was increased in the deqi group and the delayed deqi group (P<0.01, P<0.05); the expression of NEP was increased in deqi group (P<0.05), and the expression of ECE-1 and ACE2 was increased in the deqi group and the delayed deqi group (P<0.05). Compared with the delayed deqi group and the non-deqi group, the escape latency in the deqi group was shortened from Day 3 to Day 5 (P<0.05), and the times of platform crossing and the ratio of platform quadrant to total time were increased (P<0.05, P<0.01). Compared with the non-deqi group, the expression of Aß was reduced (P<0.05), the expression of LRP1 and ApoE was increased in the deqi group (P<0.05). The expression of NEP in the deqi group was higher than that in the delayed deqi group and the non-deqi group (P<0.05). CONCLUSION: Compared with non-deqi, moxibustion with deqi could promote Aß transport and degradation, thereby reducing Aß level in the brain and improving cognitive function for AD rats.


Asunto(s)
Enfermedad de Alzheimer , Moxibustión , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/genética , Enzima Convertidora de Angiotensina 2 , Animales , Apolipoproteínas E/metabolismo , Hipocampo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
14.
J Cardiovasc Pharmacol ; 79(5): 730-738, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121714

RESUMEN

ABSTRACT: Hyperhomocysteinemia is an independent risk factor for atherosclerosis. It is known that macrophage autophagy plays a protective role in atherosclerosis and that hyperhomocysteinemia is strongly linked to autophagy. Therefore, it is of great significance to study the molecular mechanisms underlying the effect of homocysteine (Hcy) on macrophage autophagy. This study aimed to investigate the effects of Hcy on autophagy in a human acute monocytic leukemia cell line (THP-1). The Hcy-treated THP-1 cells exhibited increased levels of the autophagy substrate SQSTM1 (p62) and decreased levels of the autophagy markers LC3 II/I and Beclin-1, indicating a decrease in autophagy in vitro. Furthermore, Western blotting showed that Hcy significantly increased the levels of p-mTOR and nuclear TFEB and decreased the levels of p-AMPK and cytoplasmic TFEB. These data suggest that Hcy inhibits autophagosome formation in human THP-1 macrophages through the AMPK-mTOR-TFEB signaling pathway. Our findings provide new insights into the mechanisms of atherosclerotic diseases caused by Hcy.


Asunto(s)
Aterosclerosis , Hiperhomocisteinemia , Proteínas Quinasas Activadas por AMP/metabolismo , Aterosclerosis/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología , Niño , Homocisteína/toxicidad , Humanos , Macrófagos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
Zool Res ; 43(2): 205-216, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35084126

RESUMEN

Red tilapia ( Oreochromis spp .) is one of the most popular fish in China due to its bright red appearance, fast growth rate, and strong adaptability. Understanding the sex determination mechanisms is of vital importance for the selection of all-male lines to increase aquacultural production of red tilapia. In this research, the genetic architecture for sex from four mapping populations ( n=1 090) of red tilapia was analyzed by quantitative trait loci (QTL)-seq, linkage-based QTL mapping, and linkage disequilibrium (LD)-based genome-wide association studies. Two genome-wide significant QTL intervals associated with sex were identified on ChrLG1 (22.4-23.9 Mb) and ChrLG23 (32.0-35.9 Mb), respectively. The QTL on ChrLG1 was detected in family 1 (FAM1), FAM2, and FAM4, and the other QTL on ChrLG23 was detected in FAM3 and FAM4. Four microsatellite markers located within the QTL were successfully developed for marker-assisted selection. Interestingly, three ( lpp, sox14, and amh) of the 12 candidate genes located near or on the two QTL intervals were abundantly expressed in males, while the remaining genes were more highly expressed in females. Seven genes ( scly, ube3a, lpp, gpr17, oca2, cog4, and atp10a) were significantly differentially expressed between the male and female groups. Furthermore, LD block analysis suggested that a cluster of genes on ChrLG23 may participate in regulating sex development in red tilapia. Our study provides important information on the genetic architecture of sex in red tilapia and should facilitate further exploration of sex determination mechanisms in this species.


Asunto(s)
Sitios de Carácter Cuantitativo , Tilapia , Animales , Femenino , Estudios de Asociación Genética/veterinaria , Ligamiento Genético , Masculino , Tilapia/genética
16.
BMC Plant Biol ; 21(1): 599, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915868

RESUMEN

BACKGROUND: Soil salinization extensively hampers the growth, yield, and quality of crops worldwide. The most effective strategies to counter this problem are a) development of crop cultivars with high salt tolerance and b) the plantation of salt-tolerant crops. Glycyrrhiza inflata, a traditional Chinese medicinal and primitive plant with salt tolerance and economic value, is among the most promising crops for improving saline-alkali wasteland. However, the underlying molecular mechanisms for the adaptive response of G. inflata to salinity stress remain largely unknown. RESULT: G. inflata retained a high concentration of Na+ in roots and maintained the absorption of K+, Ca2+, and Mg2+ under 150 mM NaCl induced salt stress. Transcriptomic analysis of G. inflata roots at different time points of salt stress (0 min, 30 min, and 24 h) was performed, which resulted in 70.77 Gb of clean data. Compared with the control, we detected 2645 and 574 differentially expressed genes (DEGs) at 30 min and 24 h post-salt-stress induction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that G. inflata response to salt stress post 30 min and 24 h was remarkably distinct. Genes that were differentially expressed at 30 min post-salt stress induction were enriched in signal transduction, secondary metabolite synthesis, and ion transport. However, genes that were differentially expressed at 24 h post-salt-stress induction were enriched in phenylpropane biosynthesis and metabolism, fatty acid metabolism, glycerol metabolism, hormone signal transduction, wax, cutin, and cork biosynthesis. Besides, a total of 334 transcription factors (TFs) were altered in response to 30 min and 24 h of salt stress. Most of these TFs belonged to the MYB, WRKY, AP2-EREBP, C2H2, bHLH, bZIP, and NAC families. CONCLUSION: For the first time, this study elucidated the salt tolerance in G. inflata at the molecular level, including the activation of signaling pathways and genes that regulate the absorption and distribution of ions and root growth in G. inflata under salt stress conditions. These findings enhanced our understanding of the G. inflata salt tolerance and provided a theoretical basis for cultivating salt-tolerant crop varieties.


Asunto(s)
Glycyrrhiza/crecimiento & desarrollo , Transporte Iónico , Raíces de Plantas/crecimiento & desarrollo , Estrés Salino , Absorción Fisicoquímica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Glycyrrhiza/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Raíces de Plantas/metabolismo , RNA-Seq , Tolerancia a la Sal , Sodio/metabolismo , Transcriptoma
17.
Environ Sci Technol ; 55(23): 15694-15704, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34784716

RESUMEN

A prominent source of hydroxyl radicals (•OH), nitrous acid (HONO) plays a key role in tropospheric chemistry. Apart from direct emission, HONO (or its conjugate base nitrite, NO2-) can be formed secondarily in the atmosphere. Yet, how secondary HONO forms requires elucidation, especially for heterogeneous processes involving numerous organic compounds in atmospheric aerosols. We investigated nitrite production from aqueous photolysis of nitrate for a range of conditions (pH, organic compound, nitrate concentration, and cation). Upon adding small oxygenates such as ethanol, n-butanol, or formate as •OH scavengers, the average intrinsic quantum yield of nitrite [Φ(NO2-)] was 0.75 ± 0.15%. With near-UV-light-absorbing vanillic acid (VA), however, the effective Φ(NO2-) was strongly pH-dependent, reaching 8.0 ± 2.1% at a pH of 8 and 1.5 ± 0.39% at a more atmospherically relevant pH of 5. Our results suggest that brown carbon (BrC) may greatly enhance the nitrite production from the aqueous nitrate photolysis through photosensitizing reactions, where the triplet excited state of BrC may generate solvated electrons, which reduce nitrate to NO2 for further conversion to nitrite. This photosensitization process by BrC chromophores during nitrate photolysis under mildly acidic conditions may partly explain the missing HONO in urban environments.


Asunto(s)
Nitratos , Nitritos , Ácido Nitroso , Fotólisis , Ácido Vanílico
18.
Environ Sci Technol ; 55(21): 14526-14535, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672547

RESUMEN

Cooking organic aerosol (COA) is an important source of particulate pollutants in urbanized regions. Yet, the diversity and complexity of COA components make direct identification and quantification of COA difficult. In this study, we conducted collocated OA measurements with an aerosol mass spectrometer (AMS) and a thermal desorption aerosol gas chromatography-mass spectrometer (TAG) in Shanghai. Cooking molecular tracers (e.g., C18 fatty acids, azelaic acid) measured by TAG provide unambiguous source information for evaluating the tracer ion (C6H10O+, m/z 98) used for identification and apportionment of COA in AMS analysis. Based on the collocated AMS and TAG measurements, two COA factors, namely, a primary COA (PCOA) and an oxygenated COA (OCOA) produced from rapid oxygenation of freshly emitted PCOA, were identified. Criteria for identifying COA factors from AMS analysis with different oxygenation levels are proposed, i.e., characteristic mass spectra, temporal variations, etc. Furthermore, two positive matrix factorization approaches, namely, AMS-PMF and the molecular marker (MM)-PMF, were compared for COA quantification, where high consistency was found with the contribution of COA to total PM2.5 mass estimated to be 9 ± 7% by AMS-PMF and 6 ± 5% by the MM-PMF. Our study highlights the important impacts of cooking activities on air quality in urban areas. We also demonstrate the advantage of conducting collocated measurements using multiple high time resolution mass spectrometric techniques in advancing our understanding of atmospheric OA chemistry and improving the accuracy of source apportionment.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Culinaria , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Material Particulado/análisis
19.
Huan Jing Ke Xue ; 42(11): 5086-5099, 2021 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-34708948

RESUMEN

Hydrogen sulfide(H2S) is one of the most common gas products from modern industrial processes. It is highly toxic, corrosive, and polluting, and poses harm to both the natural environment and human health if it is not properly removed. Biochar has been widely applied for the treatment of environmental pollution due to its excellent adsorption ability, low cost, and wide choice of source materials. Currently, although studies on hydrogen sulfide adsorption by biochar have attracted increasing attention, the factors involved are complex and varied, leading to a necessity to review and summarize the available knowledge and advances. To bridge the research gap, this paper presents the advances in H2S adsorption by biochar, including properties, influencing factors(i.e., biomass feedstock, pyrolysis temperature, residence time, and particle size), control measures(i.e., humidity, adsorption temperature, operating conditions, and modification of biochar by activation), and adsorption mechanism. The work will provide further reference for the preparation and optimization of biochar adsorption conditions to realize a highly efficient removal of H2S.


Asunto(s)
Sulfuro de Hidrógeno , Adsorción , Carbón Orgánico , Humanos , Tamaño de la Partícula
20.
J Antimicrob Chemother ; 76(11): 2975-2982, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402512

RESUMEN

BACKGROUND: Drug resistance mutation (DRM)-associated virological failure has become a critical issue for ART and the elimination of HIV. OBJECTIVES: To investigate the distribution characteristics of DRMs of HIV CRF01_AE, CRF07_BC and CRF08_BC, the predominant subtypes in China. METHODS: Patients receiving ART up to 31 August 2020 in Ganzhou in China were recruited. Full-length sequences of the HIV pol gene were amplified from patients with virological failure. DRMs and antiretroviral susceptibility were explored using the Stanford University HIV Drug Resistance Database HIVdb Program. RESULTS: Overall, 279 of 2204 patients under ART were found to have virological failure. Nine HIV subtypes were identified among 211 sequences that were amplified successfully and CRF08_BC (37.0%), CRF01_AE (26.1%) and CRF07_BC (25.6%) were the most prevalent, with mutation frequencies of 44.9% (35/78), 52.7% (29/55) and 35.2% (19/54), respectively. The most common DRMs of these three subtypes were K103N and M184V, while the mutation frequencies of M41L, D67N, K70R, K101E, V106M, Y181C, K219E, H221Y and N348I were obviously different among subtypes. The resistance levels and frequencies for antiretroviral drugs for these three subtypes were similar and resistances to nevirapine, efavirenz, lamivudine and emtricitabine were the most frequently observed. Compared with CRF01_AE and CRF07_BC, CRF08_BC had higher proportions of DRMs for NRTIs and lower frequencies of resistance to NRTIs and NNRTIs. CONCLUSIONS: The distribution characteristics of DRMs of HIV CRF01_AE, CRF07_BC and CRF08_BC were inconsistent and should be considered when selecting antiretroviral strategies, developing new drugs and controlling HIV strains containing DRMs.


Asunto(s)
Infecciones por VIH , VIH-1 , China/epidemiología , Farmacorresistencia Viral , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , VIH-1/genética , Humanos , Mutación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...