Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pediatr ; 11: 1303040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188910

RESUMEN

Purpose: To explore the clinical characteristics of Micrococcus luteus bloodstream infection in an infant and characterize the phenotype and genotype of the isolated strains, as well as seek suitable infection models for assessing virulence. Methods: Clinical data was collected from an infant patient diagnosed with M. luteus bloodstream infection. Metagenomic sequencing was performed on the isolated blood sample. The strain was isolated and underwent mass spectrometry, biochemical tests, antibiotic susceptibility assays, and whole-genome sequencing. The Galleria mellonella infection model was used to assess M. luteus virulence. Results: Patient responded poorly to cephalosporins, but recovered after Linezolid treatment. Metagenomic sequencing identified M. luteus as the predominant species in the sample, confirming infection. They were identified as M. luteus with a high confidence level of 98.99% using mass spectrometry. The strain showed positive results for Catalase, Oxidase, and Urea tests, and negative results for Mannose, Xylose, Lactose, Mannitol, Arginine, and Galactose tests, consistent with the biochemical profile of M. luteus reference standards. M. luteus susceptibility to 15 antibiotics was demonstrated and no resistance genes were detected. Predicted virulence genes, including clpB, were associated with metabolic pathways and the type VI secretion system. The infection model demonstrated dose-dependent survival rates. Conclusion: The infant likely developed a bloodstream infection with M. luteus due to compromised immunity. Although the isolated strain is sensitive to cephalosporin antibiotics and has low pathogenicity in infection models, clinical treatment with cephalosporins was ineffective. Linezolid proved to be effective, providing valuable guidance for future clinical management of such rare infections.

2.
Sci Total Environ ; 838(Pt 1): 155937, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588841

RESUMEN

Microplastics (MPs) as emerging contaminants have become a global environmental problem. However, studies on the effects of MPs on metabolic diseases remain limited. Here, we evaluated the effects of polystyrene (PS), one of the most prominent types of MPs, on insulin sensitivity in mice fed with normal chow diet (NCD) or high-fat diet (HFD), and explained the underlying mechanisms. Mice fed with NCD or HFD both showed insulin resistance (IR) after PS exposure accompanied by increased plasma lipopolysaccharide and pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-1ß. Exposure to PS also resulted in a significant decrease in the richness and diversity of gut microbiota, particularly an increase in the relative abundance of Gram-negative bacteria such as Prevotellaceae and Enterobacteriaceae. Additionally, PS with a small particle size (5 µm) accumulated in the liver, kidneys and blood vessels of mice. Further analyses showed inhibition of the insulin signaling pathway in the liver of PS exposed mice, such as inhibition of IRS1 and decreased expression of PI3K. Hence, the mechanism of PS exposure to induce IR in mice might be mediated through regulating gut microbiota and PS accumulation in tissues, stimulating inflammation and inhibiting the insulin signaling pathway. In conclusion, PS might be a potential environmental contaminant that causes metabolic diseases associated with IR.


Asunto(s)
Resistencia a la Insulina , Insulinas , Enfermedades Metabólicas , Enfermedades no Transmisibles , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Microplásticos , Plásticos , Poliestirenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...