Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 69(6): 823-832, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38218634

RESUMEN

Global warming during the Miocene Climate Optimum (MCO, ∼17-14 million years ago) is associated with massive carbon emissions sourced from the flood basalt volcanism and ocean crustal production. However, the perturbation of tectonic carbon degassing on the interaction between climate change and carbon cycle remains unclear. Here, through time-evolutive phase analysis of new and published high-resolution benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records from the global ocean, we find that variations in the marine carbon cycle lead the climate-cryosphere system (δ13C-lead-δ18O) on 405,000-year eccentricity timescales during the MCO. This is in contrast to the previously reported climate-lead-carbon (δ18O-lead-δ13C) scenario during most of the Oligo-Miocene (∼34-6 million years ago). Further sensitivity analysis and model simulations suggest that the elevated atmospheric CO2 concentrations and the resulting greenhouse effect strengthened the low-latitude hydrological cycle during the MCO, accelerating the response of marine carbon cycle to eccentricity forcing. Tropical climate processes played a more important role in regulating carbon-cycle variations when Earth's climate was in a warm regime, as opposed to the dominant influence of polar ice-sheet dynamics during the Plio-Pleistocene (after ∼6 million years ago).

3.
Sci Adv ; 6(41)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33028516

RESUMEN

The quest of geological proxies to evaluate low-latitude hydrological changes at a planetary scale remains an ongoing issue. The Dole effect is such a potential proxy owing to its global character. We propose a new approach to recalculate the fluctuation of the Dole effect (∆DE*) over the past 800 thousand years (ka). The ∆DE* calculated this way is dominated by precession cycles alone, with lesser variance in the obliquity bands and almost no variance in the eccentricity bands. Moreover, the ∆DE* is notably correlated with Chinese stalagmite δ18O record over the past 640 ka; simulated terrestrial rainfall changes between 30°N and 30°S over the past 300 ka. Our findings highlight the predominant role of the low-latitude hydroclimate in governing the ∆DE* on orbital time scales, while high-latitude climate impacts are negligible. In turn, we argue that the ∆DE* can be used to indicate low-latitude hydrological changes at a global extent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA