Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Immun Inflamm Dis ; 12(5): e1277, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775687

RESUMEN

BACKGROUND: Kawasaki disease (KD) is an autoimmune disease with cardiovascular disease as its main complication, mainly affecting children under 5 years old. KD treatment has made tremendous progress in recent years, but intravenous immunoglobulin (IVIG) resistance remains a major dilemma. Bibliometric analysis had not been used previously to summarize and analyze publications related to IVIG resistance in KD. This study aimed to provide an overview of the knowledge framework and research hotspots in this field through bibliometrics, and provide references for future basic and clinical research. METHODS: Through bibliometric analysis of relevant literature published on the Web of Science Core Collection (WoSCC) database between 1997 and 2023, we investigated the cooccurrence and collaboration relationships among countries, institutions, journals, and authors and summarized key research topics and hotspots. RESULTS: Following screening, a total of 364 publications were downloaded, comprising 328 articles and 36 reviews. The number of articles on IVIG resistance increased year on year and the top three most productive countries were China, Japan, and the United States. Frontiers in Pediatrics had the most published articles, and the Journal of Pediatrics had the most citations. IVIG resistance had been studied by 1889 authors, of whom Kuo Ho Chang had published the most papers. CONCLUSION: Research in the field was focused on risk factors, therapy (atorvastatin, tumor necrosis factor-alpha inhibitors), pathogenesis (gene expression), and similar diseases (multisystem inflammatory syndrome in children, MIS-C). "Treatment," "risk factor," and "prediction" were important keywords, providing a valuable reference for scholars studying this field. We suggest that, in the future, more active international collaborations are carried out to study the pathogenesis of IVIG insensitivity, using high-throughput sequencing technology. We also recommend that machine learning techniques are applied to explore the predictive variables of IVIG resistance.


Asunto(s)
Bibliometría , Resistencia a Medicamentos , Inmunoglobulinas Intravenosas , Síndrome Mucocutáneo Linfonodular , Humanos , Inmunoglobulinas Intravenosas/administración & dosificación , Inmunoglobulinas Intravenosas/farmacología , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Síndrome Mucocutáneo Linfonodular/epidemiología
2.
Nutr Metab (Lond) ; 21(1): 22, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658956

RESUMEN

BACKGROUND: Spexin, a 14 amino acid peptide, has been reported to regulate obesity and its associated complications. However, little is known about the underlying molecular mechanism. Therefore, this study aimed to investigate the effects of spexin on obesity and explore the detailed molecular mechanisms in vivo and in vitro. METHODS: Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity, and mice fed a standard fat diet were used as controls. Then, these mice were treated with SPX or Vehicle by intraperitoneal injection for an additional 12 weeks, respectively. The metabolic profile, fat-browning specific markers and mitochondrial contents were detected. In vitro, 3T3-L1 cells were used to investigate the molecular mechanisms. RESULTS: After 12 weeks of treatment, SPX significantly decreased body weight, serum lipid levels, and improved insulin sensitivity in HFD-induced obese mice. Moreover, SPX was found to promote oxygen consumption in HFD mice, and it increased mitochondrial content as well as the expression of brown-specific markers in white adipose tissue (WAT) of HFD mice. These results were consistent with the increase in mitochondrial content and the expression of brown-specific markers in 3T3-L1 mature adipocytes. Of note, the spexin-mediated beneficial pro-browning actions were abolished by the JAK2/STAT3 pathway antagonists in mature 3T3-L1 cells. CONCLUSIONS: These data indicate that spexin ameliorates obesity-induced metabolic disorders by improving WAT browning via activation of the JAK2/STAT3 signaling pathway. Therefore, SPX may serve as a new therapeutic candidate for treating obesity.

3.
Heliyon ; 10(5): e27290, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486756

RESUMEN

Objective: To analyse the research history, development trends and current status of relevant literature in the field of Kawasaki disease, and to provide the basis for future directions in Kawasaki disease (KD) research. Methods: Literature on Kawasaki disease published between January 1974 and December 2022 was searched for in the Web of Science database, and CiteSpace was used to perform visual analyses. Results: The search yielded a total of 6950 articles. The number of publications related to Kawasaki disease showed an increasing trend. A collaborative network analysis revealed that the United States, Japan and mainland China were the most influential countries in this field. The University of California system contributed the most publications and the journal with the most publications was Circulation. JW Newburger was an authoritative author in this field. "Coronary artery lesion", "Intravenous immunoglobulin" (IVIG) and "Risk factor" were three prominent keywords. Keyword bursts changed from "TNF" and "IVIG", which focused on aetiology and treatment, to "Long term management", which emphasized the recovery period, and to "Kawasaki-like disease" and "Multisystem inflammatory syndrome" during the novel coronavirus pandemic. Trends of highly cited references indicated that landmark articles in different periods focused on Kawasaki disease guidelines, gene polymorphisms and multisystem inflammatory syndrome caused by the novel coronavirus. Conclusion: The aetiology of Kawasaki disease remains unclear, but viral infection is likely to play an important role. The combination of evolving sequencing technologies, large-scale epidemiological investigations and prospective cohort studies is likely to be important in exploring Kawasaki disease and improving its prognosis in future.

4.
Transl Pediatr ; 13(2): 271-287, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38455756

RESUMEN

Background: Kawasaki disease (KD) often complicates coronary artery lesions (CALs). Despite the established significance of STAT3 signaling during the acute phase of KD and signal transducer and activator of transcription 3 (STAT3) signaling being closely related to CALs, it remains unknown whether and how STAT3 was regulated by ubiquitination during KD pathogenesis. Methods: Bioinformatics and immunoprecipitation assays were conducted, and an E3 ligase, murine double minute 2 (MDM2) was identified as the ubiquitin ligase of STAT3. The blood samples from KD patients before and after intravenous immunoglobulin (IVIG) treatment were utilized to analyze the expression level of MDM2. Human coronary artery endothelial cells (HCAECs) and a mouse model were used to study the mechanisms of MDM2-STAT3 signaling during KD pathogenesis. Results: The MDM2 expression level decreased while the STAT3 level and vascular endothelial growth factor A (VEGFA) level increased in KD patients with CALs and the KD mouse model. Mechanistically, MDM2 colocalized with STAT3 in HCAECs and the coronary vessels of the KD mouse model. Knocking down MDM2 caused an increased level of STAT3 protein in HCAECs, whereas MDM2 overexpression upregulated the ubiquitination level of STAT3 protein, hence leading to significantly decreased turnover of STAT3 and VEGFA. Conclusions: MDM2 functions as a negative regulator of STAT3 signaling by promoting its ubiquitination during KD pathogenesis, thus providing a potential intervention target for KD therapy.

5.
Immunobiology ; 228(6): 152750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837870

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis that commonly affects children and its etiology remains unknown. Growing evidence suggests that immune-mediated inflammation and immune cells in the peripheral blood play crucial roles in the pathophysiology of KD. The objective of this research was to find important biomarkers and immune-related mechanisms implicated in KD, along with their correlation with immune cells in the peripheral blood. MATERIAL/METHODS: Gene microarray data from the Gene Expression Omnibus (GEO) was utilized in this study. Three datasets, namely GSE63881 (341 samples), GSE73463 (233 samples), and GSE73461 (279 samples), were obtained. To find intersecting genes, we employed differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA). Subsequently, functional annotation, construction of protein-protein interaction (PPI) networks, and Least Absolute Shrinkage and Selection Operator (LASSO) regression were performed to identify hub genes. The accuracy of these hub genes in identifying KD was evaluated using the receiver operating characteristic curve (ROC). Furthermore, Gene Set Variation Analysis (GSVA) was employed to explore the composition of circulating immune cells within the assessed datasets and their relationship with the hub gene markers. RESULTS: WGCNA yielded eight co-expression modules, with one hub module (MEblue module) exhibiting the strongest association with acute KD. 425 distinct genes were identified. Integrating WGCNA and DEGs yielded a total of 277 intersecting genes. By conducting LASSO analysis, five hub genes (S100A12, MMP9, TLR2, NLRC4 and ARG1) were identified as potential biomarkers for KD. The diagnostic value of these five hub genes was demonstrated through ROC curve analysis, indicating their high accuracy in diagnosing KD. Analysis of the circulating immune cell composition within the assessed datasets revealed a significant association between KD and various immune cell types, including activated dendritic cells, neutrophils, immature dendritic cells, macrophages, and activated CD8 T cells. Importantly, all five hub genes exhibited strong correlations with immune cells. CONCLUSION: Activated dendritic cells, neutrophils, and macrophages were closely associated with the pathogenesis of KD. Furthermore, the hub genes (S100A12, MMP9, TLR2, NLRC4, and ARG1) are likely to participate in the pathogenic mechanisms of KD through immune-related signaling pathways.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Metaloproteinasa 9 de la Matriz , Proteína S100A12 , Receptor Toll-Like 2 , Biomarcadores , Biología Computacional
6.
Front Cardiovasc Med ; 10: 1226592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576105

RESUMEN

Background: Predicting intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) can aid early treatment and prevent coronary artery lesions. A clinically consistent predictive model was developed for IVIG resistance in KD. Methods: In this retrospective cohort study of children diagnosed with KD from January 1, 2016 to December 31, 2021, a scoring system was constructed. A prospective model validation was performed using the dataset of children with KD diagnosed from January 1 to June 2022. The least absolute shrinkage and selection operator (LASSO) regression analysis optimally selected baseline variables. Multivariate logistic regression incorporated predictors from the LASSO regression analysis to construct the model. Using selected variables, a nomogram was developed. The calibration plot, area under the receiver operating characteristic curve (AUC), and clinical impact curve (CIC) were used to evaluate model performance. Results: Of 1975, 1,259 children (1,177 IVIG-sensitive and 82 IVIG-resistant KD) were included in the training set. Lymphocyte percentage; C-reactive protein/albumin ratio (CAR); and aspartate aminotransferase, sodium, and total bilirubin levels, were risk factors for IVIG resistance. The training set AUC was 0.825 (sensitivity, 0.723; specificity, 0.744). CIC indicated good clinical application of the nomogram. Conclusion: The nomogram can well predict IVIG resistance in KD. CAR was an important marker in predicting IVIG resistance in Kawasaki disease.

7.
Adv Sci (Weinh) ; 10(27): e2302025, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515378

RESUMEN

YTH domain family 2 (YTHDF2) is the first identified N6-methyladenosine (m6 A) reader that regulates the status of mRNA. It has been reported that overexpressed YTHDF2 promotes carcinogenesis; yet, its role in hepatocellular carcinoma (HCC) is elusive. Herein, it is demonstrated that YTHDF2 is upregulated and can predict poor outcomes in HCC. Decreased ubiquitination levels of YTHDF2 contribute to the upregulation of YTHDF2. Furthermore, heat shock protein 90 beta (HSP90ß) and STIP1 homology and U-box-containing protein 1 (STUB1) physically interact with YTHDF2 in the cytoplasm. Mechanically, the large and small middle domain of HSP90ß is required for its interaction with STUB1 and YTHDF2. HSP90ß inhibits the STUB1-induced degradation of YTHDF2 to elevate the expression of YTHDF2 and to further boost the proliferation and sorafenib resistance of HCC. Moreover, HSP90ß and YTHDF2 are upregulated, while STUB1 is downregulated in HCC tissues. The expression of HSP90ß is positively correlated with the YTHDF2 protein level, whereas the expression of STUB1 is negatively correlated with the protein levels of YTHDF2 and HSP90ß. These findings deepen the understanding of how YTHDF2 is regulated to drive HCC progression and provide potential targets for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteínas HSP90 de Choque Térmico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Unión al ARN/metabolismo , Sorafenib/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba , Proteínas HSP90 de Choque Térmico/metabolismo
8.
CNS Neurosci Ther ; 29(11): 3612-3623, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37269080

RESUMEN

AIM: Blood-brain barrier (BBB) dysfunction is one of the hallmarks of ischemic stroke. USP14 has been reported to play a detrimental role in ischemic brain injury. However, the role of USP14 in BBB dysfunction after ischemic stroke is unclear. METHODS: In this study, we tested the role of USP14 in disrupting BBB integrity after ischemic stroke. The USP14-specific inhibitor IU1 was injected into middle cerebral artery occlusion (MCAO) mice once a day. The Evans blue (EB) assay and IgG staining were used to assess BBB leakage 3 days after MCAO. FITC-detran test was slected to examine the BBB leakage in vitro. Behavior tests were conducted to evaluate recovery from ischemic stroke. RESULTS: Middle cerebral artery occlusion increased endothelial cell USP14 expression in the brain. Furthermore, the EB assay and IgG staining showed that USP14 inhibition through IU1 injection protected against BBB leakage after MCAO. Analysis of protein expression revealed a reduction in the inflammatory response and chemokine release after IU1 treatment. In addition, IU1 treatment was found to rescue neuronal loss resulting from ischemic stroke. Behavior tests showed a positive effect of IU1 in attenuating brain injury and improving motor function recovery. In vitro study showed that IU1 treatment could alleviate endothelial cell leakage induced by OGD in cultured bend.3 cells through modulating ZO-1 expression. CONCLUSIONS: Our results demonstrate a role for USP14 in disrupting the integrity of the BBB and promoting neuroinflammation after MCAO.


Asunto(s)
Barrera Hematoencefálica , Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Células Endoteliales/metabolismo , Azul de Evans/metabolismo , Azul de Evans/farmacología , Inmunoglobulina G , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/metabolismo
9.
Pediatr Res ; 94(3): 1125-1135, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36964445

RESUMEN

BACKGROUND: The prediction model of intravenous immunoglobulin (IVIG) resistance in Kawasaki disease can calculate the probability of IVIG resistance and provide a basis for clinical decision-making. We aim to assess the quality of these models developed in the children with Kawasaki disease. METHODS: Studies of prediction models for IVIG-resistant Kawasaki disease were identified through searches in the PubMed, Web of Science, and Embase databases. Two investigators independently performed literature screening, data extraction, quality evaluation, and discrepancies were settled by a statistician. The checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) was used for data extraction, and the prediction models were evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS: Seventeen studies meeting the selection criteria were included in the qualitative analysis. The top three predictors were neutrophil measurements (peripheral neutrophil count and neutrophil %), serum albumin level, and C-reactive protein (CRP) level. The reported area under the curve (AUC) values for the developed models ranged from 0.672 (95% confidence interval [CI]: 0.631-0.712) to 0.891 (95% CI: 0.837-0.945); The studies showed a high risk of bias (ROB) for modeling techniques, yielding a high overall ROB. CONCLUSION: IVIG resistance models for Kawasaki disease showed high ROB. An emphasis on improving their quality can provide high-quality evidence for clinical practice. IMPACT STATEMENT: This study systematically evaluated the risk of bias (ROB) of existing prediction models for intravenous immunoglobulin (IVIG) resistance in Kawasaki disease to provide guidance for future model development meeting clinical expectations. This is the first study to systematically evaluate the ROB of IVIG resistance in Kawasaki disease by using PROBAST. ROB may reduce model performance in different populations. Future prediction models should account for this problem, and PROBAST can help improve the methodological quality and applicability of prediction model development.


Asunto(s)
Inmunoglobulinas Intravenosas , Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Revisiones Sistemáticas como Asunto , Medición de Riesgo , Recuento de Leucocitos
10.
Int J Biol Sci ; 19(2): 377-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632463

RESUMEN

HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteína NEDD8 , Proteolisis , Receptor ErbB-2 , Ubiquitinación , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Procesamiento Proteico-Postraduccional , Receptor ErbB-2/metabolismo , Proteína NEDD8/metabolismo , Progresión de la Enfermedad
11.
Acta Pharmacol Sin ; 44(4): 853-864, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36261513

RESUMEN

Hepatocellular carcinoma (HCC) remains challenging due to the lack of efficient therapy. Promoting degradation of certain cancer drivers has become an innovative therapy. The nuclear transcription factor sine oculis homeobox 1 (SIX1) is a key driver for the progression of HCC. Here, we explored the molecular mechanisms of ubiquitination of SIX1 and whether targeting SIX1 degradation might represent a potential strategy for HCC therapy. Through detecting the ubiquitination level of SIX1 in clinical HCC tissues and analyzing TCGA and GEPIA databases, we found that ubiquitin specific peptidase 1 (USP1), a deubiquitinating enzyme, contributed to the lower ubiquitination and high protein level of SIX1 in HCC tissues. In HepG2 and Hep3B cells, activation of EGFR-AKT signaling pathway promoted the expression of USP1 and the stability of its substrates, including SIX1 and ribosomal protein S16 (RPS16). In contrast, suppression of EGFR with gefitinib or knockdown of USP1 restrained EGF-elevated levels of SIX1 and RPS16. We further revealed that SNS-023 (formerly known as BMS-387032) induced degradation of SIX1 and RPS16, whereas this process was reversed by reactivation of EGFR-AKT pathway or overexpression of USP1. Consequently, inactivation of the EGFR-AKT-USP1 axis with SNS-032 led to cell cycle arrest, apoptosis, and suppression of cell proliferation and migration in HCC. Moreover, we showed that sorafenib combined with SNS-032 or gefitinib synergistically inhibited the growth of Hep3B xenografts in vivo. Overall, we identify that both SIX1 and RPS16 are crucial substrates for the EGFR-AKT-USP1 axis-driven growth of HCC, suggesting a potential anti-HCC strategy from a novel perspective.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/patología , Gefitinib , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Proteínas Ribosómicas , Proteínas de Homeodominio/metabolismo
12.
Pediatr Res ; 93(7): 1883-1890, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36329225

RESUMEN

BACKGROUND: This study aimed to explore the functions of ubiquitin-specific protease 5 (USP5) in the endothelial inflammation of Kawasaki disease (KD). METHODS: USP5 expression levels in HCAECs were examined after stimulation with TNFα or KD sera. The inflammatory cytokine expression level and nuclear factor κB (NF-κB) signaling activation proteins were also investigated in HCAECs by using USP5 overexpression/knockdown lentivirus as well as its small molecule inhibitor vialinin A. RESULTS: USP5 expression level is upregulated in HCAECs after stimulation with KD sera. Similarly, the USP5 expression level is also increased in a time- and dose-dependent manner upon TNFα stimulation in HCAECs. Moreover, USP5 sustains proinflammatory cytokine production and NF-κB signaling activation, whereas USP5 knockdown causes the proinflammatory cytokine levels to decrease and suppress NF-κB signaling activation. Notably, the USP5 inhibitor vialinin A can suppress the expression of inflammatory genes induced by TNFα and IL-1ß in HCAECs. CONCLUSIONS: Our study identified USP5 as a positive regulator of TNFα production and its downstream signaling activation during the inflammatory responses in HCAECs, and demonstrated that its inhibitor vialinin A might serve as a candidate drug for KD therapy to prevent the excessive production of proinflammatory cytokines. IMPACT: USP5 is upregulated in human coronary artery endothelial cells (HCAECs) whether incubated with acute KD sera or TNFα in vitro. USP5 promotes proinflammatory cytokine expression by sustaining NF-κB signaling activation in HCAECs. The USP5 inhibitor vialinin A can suppress the expression levels of proinflammatory cytokines in HCAEC, thus providing a novel mechanism and intervention strategy in KD therapy.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Proteasas Ubiquitina-Específicas , Humanos , Citocinas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Síndrome Mucocutáneo Linfonodular/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
13.
Oncogene ; 41(49): 5253-5265, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316443

RESUMEN

Glioma is the most common malignant primary brain tumor with aggressiveness and poor prognosis. Although extracellular vesicles (EVs)-based cell-to-cell communication mediates glioma progression, the key molecular mediators of this process are still not fully understood. Herein, we elucidated an EVs-mediated transfer of suprabasin (SBSN), leading to the aggressiveness and progression of glioma. High levels of SBSN were positively correlated with clinical grade, predicting poor clinical prognosis of patients. Upregulation of SBSN promoted, while silencing of SBSN suppressed tumorigenesis and aggressiveness of glioma cells in vivo. EVs-mediated transfer of SBSN resulted in an increase in SBSN levels, which promoted the aggressiveness of glioma cells by enhancing migration, invasion, and angiogenesis of recipient glioma cells. Mechanistically, SBSN activated NF-κB signaling by interacting with annexin A1, which further induced Lys63-linked and Met1-linear polyubiquitination of NF-κB essential modulator (NEMO). In conclusion, the communication of SBSN-containing EVs within glioma cells drives the formation and development of tumors by activating NF-κB pathway, which may provide potential therapeutic target for clinical intervention in glioma.


Asunto(s)
Vesículas Extracelulares , Glioma , Humanos , Antígenos de Diferenciación/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioma/patología , Proteínas de Neoplasias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ubiquitinación
14.
Front Cardiovasc Med ; 9: 1014067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312287

RESUMEN

Objective: To review and critically appraise articles on prediction models for coronary artery lesions (CALs) in Kawasaki disease included in PubMed, Embase, and Web of Science databases from January 1, 1980, to December 23, 2021. Materials and methods: Study screening, data extraction, and quality assessment were performed by two independent reviewers, with a statistics expert resolving discrepancies. Articles that developed or validated a prediction model for CALs in Kawasaki disease were included. The Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies checklist was used to extract data from different articles, and Prediction Model Risk-of-Bias Assessment Tool (PROBAST) was used to assess the bias risk in different prediction models. We screened 19 studies from a pool of 881 articles. Results: The studies included 73-5,151 patients. In most studies, univariable logistic regression was used to develop prediction models. In two studies, external data were used to validate the developing model. The most commonly included predictors were C-reactive protein (CRP) level, male sex, and fever duration. All studies had a high bias risk, mostly because of small sample size, improper handling of missing data, and inappropriate descriptions of model performance and the evaluation model. Conclusion: The prediction models were suitable for the subjects included in the studies, but were poorly effective in other populations. The phenomenon may partly be due to the bias risk in prediction models. Future models should address these problems and PROBAST should be used to guide study design.

15.
Int J Biol Sci ; 18(6): 2439-2451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35414775

RESUMEN

Prostate cancer (PC) remains a great medical challenge due to its high incidence and the development of castration resistance in patients treated with androgen deprivation therapy. Deubiquitinases, the enzymes that specifically hydrolyze ubiquitin chains on their substrates, were recently proposed as a serious of critical therapeutic targets for cancer treatment. Our previous study has been reported that the ubiquitin specific peptidase 1 (USP1) functionally acts as a deubiquitinase of sine oculis homeobox homolog 1 (SIX1) and contributes to the proliferation and castration resistance of PC. The stabilization of SIX1 by USP1 partially depends on the status of glucose-regulated protein 75 (GRP75). In this study, we aimed to identify a SIX1 degradation inducer via inhibiting the USP1-SIX1 axis. we screened a range of kinase inhibitors and showed that SNS-032 is the best candidate to trigger the ubiquitinated degradation of SIX1. SNS-032 not only restrains activity of the USP1-SIX1 axis and cell cycle progression, but also results in apoptosis of PC cells. Moreover, the combination of SNS-032 and enzalutamide synergistically induces apoptosis and downregulates expression of USP1, SIX1, and AR/AR-V7 in AR-V7 highly expressed 22Rv1 cells. Overall, our findings may develop a novel and effective strategy to overcome castration resistance in PC for the identification of a SIX1 degradation inducer via targeting the USP1-SIX1 axis.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Homeodominio/genética , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
16.
Ann Med ; 54(1): 442-453, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35099338

RESUMEN

OBJECTIVE: We aimed to develop a nomogram to predict risk of resistance to intravenous immunoglobulin (IVIG) in children with Kawasaki disease in eastern China. METHODS: We retrospectively analysed the data of children with Kawasaki disease who received IVIG during hospitalisation at Soochow University Affiliated Children's Hospital. IVIG resistance was defined as recrudescent or persistent fever ≥36 h after the end of the IVIG infusion. Baseline variables were analysed using least absolute shrinkage and selection operator (LASSO) to identify the predictors of IVIG resistance, which were then used to construct a predictive nomogram. Calibration curve and area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the model. The predictive nomogram was validated on test sets of external data and prospective data. RESULTS: Between January 2015 and December 2020, 1293 Kawasaki disease patients were hospitalized in Soochow University Affiliated Children's Hospital. Among them, 72 (5.57%) showed IVIG resistance. LASSO identified haemoglobin, percentage of neutrophils, C-reactive protein level, platelet count, serum albumin, serum sodium, serum alkaline phosphatase, coronary artery damage, and complete Kawasaki disease as risk factors for IVIG resistance. The nomogram constructed using these factors showed satisfactory discriminatory power (AUC, 0.75), and sensitivity (0.74) and specificity (0.64). In the external data and prospective data, the AUC was 0.66 and 0.83, respectively, the sensitivity was 0.86 and 1, respectively, and the specificity was 0.49 and 0.60, respectively. CONCLUSIONS: The predictive nomogram constructed using nine factors associated with IVIG resistance in children with Kawasaki disease could be a useful tool for identifying patients likely to show IVIG resistance. This nomogram may help reduce the risk of coronary artery lesions.Key MessagesNone of the IVIG resistance scoring systems has shown consistently good performance in previous studies. Tools to predict the risk of IVIG resistance in eastern China are lacking.In our series, haemoglobin level, percentage of neutrophils, platelet count, coronary artery damage, incomplete Kawasaki disease, and CRP, serum albumin, serum sodium, and serum alkaline phosphatase levels were risk factors of IVIG resistance in hospitalized children in the eastern China cities of Suzhou and Fuzhou.We propose an easy-to-use nomogram to predict the risk factors of IVIG resistance in hospitalized children.


Asunto(s)
Inmunoglobulinas Intravenosas , Síndrome Mucocutáneo Linfonodular , Niño , China/epidemiología , Hospitalización , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Lactante , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Nomogramas , Estudios Prospectivos , Estudios Retrospectivos
17.
Pediatr Res ; 91(3): 565-571, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33790413

RESUMEN

BACKGROUND: Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is caused by variants in BRAT1 (BRCA1-associated protein required for ATM activation-1). However, the molecular mechanism of RMFSL is still unclear. METHODS: An RMFSL infant was recruited and the peripheral blood samples from his trio-family were collected. The genomic DNA was extracted, and then the whole-exome sequencing was performed. The expression of BRAT1 was analyzed by Western blotting. The subcellular localization of BRAT1 and MitoSOX (mitochondrial superoxide level) was investigated by confocal microscopy. The RNA samples were obtained from transfected cells, and then the RNA sequencing was performed. RESULTS: In this study, a novel homozygous BRAT1 variant c.233G > C with amino acid change of R with P at residue 78 (R78P) was identified. This variant altered the peptide structure and subcellular localization, as well as the expression in vitro. However, R78P did not alter the ability of BRAT1 to downregulate MitoSOX in mitochondria. Meanwhile, R78P BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by gene set enrichment analysis (GSEA). CONCLUSIONS: The BRAT1 variant spectrum has been expanded, which will be helpful for genetic counseling. We also explored the molecular mechanism altered by R78P, which will provide a better understanding of the pathogenesis of RMFSL. IMPACT: The detailed course of an infant with lethal neonatal RMFSL was depicted. A novel disease-causing variant R78P in BRAT1 for lethal neonatal RMFSL was identified. R78P led to reduced BRAT1 expression and nuclear localization in vitro. R78P did not alter the ability of BRAT1 to downregulate MitoSOX in the mitochondria. The variant R78P in BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by GSEA.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Microcefalia , Humanos , Lactante , Recién Nacido , Microcefalia/genética , Mutación , Proteínas Nucleares/genética , Linaje , Convulsiones/genética
18.
Front Immunol ; 13: 1090056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700213

RESUMEN

Aims: The Ca+/NFAT (Nuclear factor of activated T cells) signaling pathway activation is implicated in the pathogenesis of Kawasaki disease (KD); however, we lack detailed information regarding the regulatory network involved in the human coronary endothelial cell dysfunction and cardiovascular lesion development. Herein, we aimed to use mouse and endothelial cell models of KD vasculitis in vivo and in vitro to characterize the regulatory network of NFAT pathway in KD. Methods and Results: Among the NFAT gene family, NFAT2 showed the strongest transcriptional activity in peripheral blood mononuclear cells (PBMCs) from patients with KD. Then, NFAT2 overexpression and knockdown experiments in Human coronary artery endothelial cells (HCAECs) indicated that NFAT2 overexpression disrupted endothelial cell homeostasis by regulation of adherens junctions, whereas its knockdown protected HCAECs from such dysfunction. Combined analysis using RNA-sequencing and transcription factor (TF) binding site analysis in the NFAT2 promoter region predicted regulation by Forkhead box O4 (FOXO4). Western blotting, chromatin immunoprecipitation, and luciferase assays validated that FOXO4 binds to the promoter and transcriptionally represses NFAT2. Moreover, Foxo4 knockout increased the extent of inflamed vascular tissues in a mouse model of KD vasculitis. Functional experiments showed that inhibition NFAT2 relieved Foxo4 knockout exaggerated vasculitis in vivo. Conclusions: Our findings revealed the FOXO4/NFAT2 axis as a vital pathway in the progression of KD that is associated with endothelial cell homeostasis and cardiovascular inflammation development.


Asunto(s)
Factores de Transcripción Forkhead , Síndrome Mucocutáneo Linfonodular , Factores de Transcripción NFATC , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Leucocitos Mononucleares/metabolismo , Síndrome Mucocutáneo Linfonodular/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Transducción de Señal
19.
J Biol Chem ; 297(5): 101258, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34599966

RESUMEN

The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Línea Celular , Movimiento Celular , Proliferación Celular , Humanos , Neointima/genética , Estabilidad Proteica , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitina Tiolesterasa/genética
20.
Cell Death Dis ; 12(10): 857, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548474

RESUMEN

Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Animales , Benzamidas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Flavonas/farmacología , Humanos , Lisina/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...