Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38788733

RESUMEN

The electrical manipulation of the magnetic transition and spinpolarized states has attracted extensive attention in the field of spintronics. In this work, we perform a detailed study on the electronic and magnetic properties of the carrier-doped monolayer CrCTe3by using first-principles calculation. It is found that, the magnetic transition from Néel-antiferomagnetic (nAFM) to ferromagnetic (FM) is observed in the case of the electron doping, while for hole doping a magnetic transition sequence of nAFM → zigzag-AFM → FM is observed in the monolayer CrCTe3. Interestingly, the carrier doping induced FM ground state always exhibits half-metallicity with full spin polarization. Moreover, the spin polarity of the half-metallic electronic states is opposite for electron and hole doping, meaning that the spin polarization direction can be tuned by manipulating a gate voltage. The Monte Carlo calculations show that the magnetic transition temperature of the doped FM CrCTe3is rapidly increased with the increasing doping concentration and is extremely expected to achieve room temperature at a suitable doping concentration. These findings demonstrate that the monolayer AFM system possesses a potential application in spintronic devices with electrically tunable spin polarization.

2.
J Neuroimmune Pharmacol ; 19(1): 23, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775885

RESUMEN

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1ß, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.


Asunto(s)
Hipocampo , Kernicterus , Microglía , Minociclina , Neurogénesis , Animales , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Minociclina/farmacología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Inflamación/metabolismo , Inflamación/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico
3.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531119

RESUMEN

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Asunto(s)
Arabidopsis , Medicago truncatula , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Tolerancia a la Sal , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Estrés Fisiológico/genética , Germinación/genética
4.
Cell Signal ; 115: 111034, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38190957

RESUMEN

The WW and C2 domain containing (WWC) protein family functions as scaffolds regulating cell proliferation and organ growth control through the Hippo signaling pathway. However, their pan-cancer dysregulation and mechanistic roles in signaling transduction have remained unclear. We performed integrated pan-cancer analyses of WWC family gene expression using data from The Cancer Genome Atlas (TCGA) across 33 different cancer types. Prognostic relevance was evaluated by survival analyses. WWC genetic alterations, DNA methylation, pathway activities, drug response, and tumor immunology were analyzed using online databases. Furthermore, we examined the functional roles of WWCs in lung cancer cells. We observed aberrant WWC expression in various cancers, which associated with patient prognosis. WWC hypermethylation occurred in many cancers and exhibited negative correlation with expression, alongside mutations linked to poor outcomes. Pathway analysis implicated WWCs as Hippo pathway scaffolds, while drug sensitivity analysis suggested associations with diverse chemotherapies. Additionally, pan-cancer analyses elucidated vital immunomodulatory roles for WWC through heterogeneous correlations with immune cell infiltrates, checkpoint molecules, tumor mutation burden, microsatellite instability, and chemokine pathways across cancers. Experimentally, WWCs suppressed lung cancer cell proliferation, migration, and invasion while enhancing apoptosis and paclitaxel chemosensitivity. Mechanistically, WWCs bound large tumor suppressor 1 and 2 (LATS1/2) kinases to stimulate phosphorylation cascades, thereby inhibiting nuclear translocation of the Yes-associated protein (YAP) oncoprotein. Taken together, our multi-omics characterization provides comprehensive evidence for WWCs as putative tumor suppressors across cancers via Hippo pathway modulation. WWCs may serve as prognostic markers and therapeutic targets in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transducción de Señal/genética , Vía de Señalización Hippo , Fosforilación , Proliferación Celular/genética
5.
In Vitro Cell Dev Biol Anim ; 60(2): 161-171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216855

RESUMEN

Neonatal jaundice is one of the most common disorders in the first 2 wk after birth. Unconjugated bilirubin (UCB) is neurotoxic and can cause neurological dysfunction; however, the underlying mechanisms remain unclear. Neurogenesis, neuronal growth, and synaptogenesis are exuberant in the early postnatal stage. In this study, the impact of UCB on neuritogenesis and synaptogenesis in the early postnatal stage was evaluated both in vitro and in vivo. Primary culture neuronal stem and progenitor cells (NSPCs) were treated with UCB during differentiation, and then the neurite length and synapse puncta were measured. In the bilirubin encephalopathy (BE) animal model, DCX+-marked developing neurons were used to detect apical length and dendritic arborization. According to the data, UCB significantly reduced neurite length and synapse density, as well as decreased the apical dendrite length and dendritic arborization. Furthermore, the NMDAR subunit NR2B was downregulated in NSPCs, while pCREB expression in the hippocampus progressively decreased during disease progression in the BE model. Next, we tested the expression of NR2B, pCREB, mBDNF, and p-mTOR in NSPCs in vitro, and found that UCB treatment reduced the expression of these proteins. In summary, this suggests that UCB causes chronic neurological impairment and is related to the inhibition of NMDAR-CREB-BDNF signaling in NSPCs, which is associated with reduced neuritogenesis and synaptogenesis. This finding may inspire the development of novel pharmaceuticals and treatments.


Asunto(s)
Bilirrubina , Drogas Veterinarias , Animales , Bilirrubina/farmacología , Bilirrubina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Drogas Veterinarias/metabolismo , Neuronas/metabolismo , Neurogénesis , Células Madre/metabolismo
6.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984289

RESUMEN

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Asunto(s)
Plomo , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Plomo/toxicidad , Miocitos Cardíacos/metabolismo , Elastasa de Leucocito/metabolismo
7.
BMC Cancer ; 23(1): 879, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723477

RESUMEN

BACKGROUND: The epithelial-mesenchymal transition (EMT) plays an indispensable role in the development and progression of Endometrial cancer (EC). Nevertheless, little evidence is reported to uncover the functionality and application of EMT-related molecules in the prognosis of EC. This study aims to develop novel molecular markers for prognosis prediction in patients with EC. METHODS: RNA sequencing profiles of EC patients obtained from The Cancer Genome Atlas (TCGA) database were used to screen differential expression genes (DEGs) between tumors and normal tissues. The Cox regression model with the LASSO method was utilized to identify survival-related DEGs and to establish a prognostic signature whose performance was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC) and calibration curve. Eventually, functional enrichment analysis and cellular experiments were performed to reveal the roles of prognosis-related genes in EC progression. RESULTS: A total of 540 EMT-related DEGs in EC were screened, and subsequently a four-gene risk signature comprising SIRT2, SIX1, CDKN2A and PGR was established to predict overall survival of EC. This risk signature could serve as a meaningfully independent indicator for EC prognosis via multivariate Cox regression (HR = 2.002, 95%CI = 1.433-2.798; P < 0.001). The nomogram integrating the risk signature and clinical characteristics exhibited robust validity and performance at predicting EC overall survival indicated by ROC and calibration curve. Functional enrichment analysis revealed that the EMT-related genes risk signature was associated with extracellular matrix organization, mesenchymal development and cellular component morphogenesis, suggesting its possible relevance to epithelial-mesenchymal transition and cancer progression. Functionally, we demonstrated that the silencing of SIX1, SIRT2 and CDKN2A expression could accelerate the migratory and invasive capacities of tumor cells, whereas the downregulation of PGR dramatically inhibited cancer cells migration and invasion. CONCLUSIONS: Altogether, a novel four-EMT-related genes signature was a potential biomarker for EC prognosis. These findings might help to ameliorate the individualized prognostication and therapeutic treatment of EC patients.


Asunto(s)
Neoplasias Endometriales , Sirtuina 2 , Humanos , Femenino , Transición Epitelial-Mesenquimal/genética , Pronóstico , Neoplasias Endometriales/genética , Nomogramas , Proteínas de Homeodominio
8.
Stroke Vasc Neurol ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37402504

RESUMEN

BACKGROUND: Ischaemia-evoked neuroinflammation is a critical pathogenic event following ischaemic stroke. Gasdermin D (GSDMD)-associated pyroptosis represents a type of inflammation-associated programmed cell death, which can exacerbate neuroinflammatory responses and brain damage. Stimulator of interferon genes (STING) was recently described as a vital innate immune adaptor protein associated with neuroinflammation. Nevertheless, the regulatory effects of STING on microglial pyroptosis post-stroke have not been well elaborated. METHODS: STING-knockout and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO). STING small interfering RNA (siRNA) was transfected into BV2 cells before oxygen-glucose deprivation/reoxygenation (OGD/R). STING-overexpressing adeno-associated virus (AAV) and NOD-like receptor family pyrin domain containing 3 (NLRP3) siRNA were administered by stereotaxic injection. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, TdT-mediated dUTP nick end labeling (TUNEL) staining, Fluoro-Jade C (FJC) staining, neurobehavioural tests, immunohistochemistry, cytokine antibody array assay, transmission electron microscopy, immunoblot, Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out. Co-immunoprecipitation assays were used to investigate the interplay between STING and NLRP3. RESULTS: STING expression was increased after MCAO and mainly detected on microglia. STING deletion alleviated brain infarction, neuronal damage and neurobehavioural impairment in mice subjected to MCAO. STING knockout suppressed microglial activation and the secretion of inflammatory chemokines, accompanied by mitigation of microglial pyroptosis. Specific upregulation of microglial STING by AAV-F4/80-STING aggravated brain injury and microglial pyroptosis. Mechanistically, co-immunoprecipitation showed that STING bound to NLRP3 in microglia. Supplementation of NLRP3 siRNA reversed AAV-F4/80-STING-induced deterioration of microglial pyroptosis. CONCLUSIONS: The current findings indicate that STING modulates NLRP3-mediated microglial pyroptosis following MCAO. STING may serve as a therapeutic target in neuroinflammation induced by cerebral ischaemic/reperfusion (I/R) injury.

9.
Anal Methods ; 15(29): 3586-3591, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37463001

RESUMEN

Amphiphilic aggregation-induced emission (AIE) molecules show superior potential for fabricating novel ultrasmall nanoprobes. Here, an anionic dipyridyl tetraphenylethene (TPE) derivative is rationally designed and a super-small self-assembled AIEgen nanoprobe (TPE-2Py-SO3NaNPs, ca. 2.48 nm) is thus conveniently constructed for the supersensitive detection of protamine and trypsin. In HEPES/DMSO solution (8 : 2, v/v, pH = 7.4), negatively charged TPE-2Py-SO3NaNPs exhibited an AIE effect in the presence of positively charged protamine, presenting a fluorescence enhancement at 498 nm together with a large Stokes shift of 150 nm and a low detection limit of 8.0 ng mL-1. In addition, the in situ formed TPE-2Py-SO3Na/protamine nanocomposite can be dissociated by trypsin due to the highly selective degradation of protamine via enzymatic hydrolysis, achieving a detection limit for trypsin as low as 5.0 ng mL-1.


Asunto(s)
Colorantes Fluorescentes , Protaminas , Tripsina , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia
10.
Nano Lett ; 23(11): 5012-5018, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37212606

RESUMEN

In this work, we determined the phase diagram and electronic properties of the Li-Cs system by using an evolutionary crystal structure prediction algorithm coupled with first-principles calculations. We found that Li-rich compounds are more easily formed in a wide range of pressures, while the only predicted Cs-rich compound LiCs3 is thermodynamically stable at pressures above 359 GPa. A topological analysis of crystal structures concludes that both Li6Cs and Li14Cs have a unique topology that has not been reported in existing intermetallics. Of particular interest is the fact that four Li-rich compounds (Li14Cs, Li8Cs, Li7Cs, and Li6Cs) are found to be superconductors with a high critical temperature (∼54 K for Li8Cs at 380 GPa), due to their peculiar structural topologies and notable charge transfer from Li to Cs atoms. Our results not only extend an in-depth understanding of the high-pressure behavior of intermetallic compounds but also provide a new route to design new superconductors.

11.
Neurotox Res ; 41(4): 338-348, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058197

RESUMEN

Neuroinflammation is a major contributor to bilirubin-induced neurotoxicity, which results in severe neurological deficits. Microglia are the primary immune cells in the brain, with M1 microglia promoting inflammatory injury and M2 microglia inhibiting neuroinflammation. Controlling microglial inflammation could be a promising therapeutic strategy for reducing bilirubin-induced neurotoxicity. Primary microglial cultures were prepared from 1-3-day-old rats. In the early stages of bilirubin treatment, pro-/anti-inflammatory (M1/M2) microglia mixed polarization was observed. In the late stages, bilirubin persistence induced dominant proinflammatory microglia, forming an inflammatory microenvironment and inducing iNOS expression as well as the release of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Simultaneously, nuclear factor-kappa B (NF-κB) was activated and translocated into the nucleus, upregulating inflammatory target genes. As well known, neuroinflammation can have an effect on N-methyl-D-aspartate receptor (NMDAR) expression or function, which is linked to cognition. Treatment with bilirubin-treated microglia-conditioned medium did affect the expression of IL-1ß, NMDA receptor subunit 2A (NR2A), and NMDA receptor subunit 2B (NR2B) in neurons. However, VX-765 effectively reduces the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1ß, as well as the expressions of CD86, and increases the expressions of anti-inflammatory related Arg-1. A timely reduction in proinflammatory microglia could protect against bilirubin-induced neurotoxicity.


Asunto(s)
Microglía , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología
12.
Microbiol Resour Announc ; 12(4): e0054322, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36951589

RESUMEN

Fusobacterium vincentii usually inhabits the oral cavity and plays an important role in periodontal diseases. Here, we report the draft genome sequence of F. vincentii strain CNGBCC1850030, isolated from healthy human feces.

13.
Transl Res ; 257: 78-92, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36813109

RESUMEN

Angiogenesis helps to improve neurological recovery by repairing damaged brain tissue and restoring cerebral blood flow (CBF). The role of the Elabela (ELA)-Apelin receptor (APJ) system in angiogenesis has gained much attention. We aimed to investigate the function of endothelial ELA on post-ischemic cerebral angiogenesis. Here, we demonstrated that the endothelial ELA expression was upregulated in the ischemic brain and treatment with ELA-32 mitigated brain injury and enhanced the restoration of CBF and newly formed functional vessels following cerebral ischemia/reperfusion (I/R) injury. Furthermore, ELA-32 incubation potentiated proliferation, migration, and tube formation abilities of the mouse brain endothelial cells (bEnd.3 cells) under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. RNA sequencing analysis indicated that ELA-32 incubation had a role in the Hippo signaling pathway, and improved angiogenesis-related gene expression in OGD/R-exposed bEnd.3 cells. Mechanistically, we depicted that ELA could bind to APJ and subsequently activate YAP/TAZ signaling pathway. Silence of APJ or pharmacological blockade of YAP abolished the pro-angiogenesis effects of ELA-32. Together, these findings highlight the ELA-APJ axis as a potential therapeutic strategy for ischemic stroke by showing how activation of this pathway promotes post-stroke angiogenesis.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Ratones , Células Endoteliales/metabolismo , Transducción de Señal , Encéfalo/metabolismo
14.
Neurochem Res ; 48(3): 804-815, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346495

RESUMEN

Astrocytes play an important role in the pathogenesis of bilirubin neurotoxicity, and activated astrocytes might be potential mediators of neuroinflammation processes contributing to neuronal cell death and tissue injury. Recent studies have reported that activated microglia induce two types of reactive astrocytes. A1 astrocytes could cause neuronal death and synaptic damage, as well as impaired phagocytosis. Therefore, the purpose of this study was to investigate whether unconjugated bilirubin (UCB)-induced A1-like astrocytes take on a neuroinflammation type and the underlying regulatory mechanisms. In this study, primary cortical astrocytes were treated with UCB in vitro. We detected the expression of complement component 3 (C3), S100 calcium binding protein A10 (S100A10), nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), activated caspase-1, gasdermin D N-terminal (GSDMD-N), PSD95, synaptophysin (SYP), the transcription levels of interleukin (IL)-1ß and IL-18, and the survival rate of astrocytes after UCB treatment. The results showed that an increase in C3 was accompanied by a decrease in S100A10, and that A1-like astrocytes were functionally expressed after UCB stimulation. Meanwhile, the NF-κB and caspase-1 pathways were activated after UCB stimulation. After adding the NF-κB-specific inhibitor trans-activator of transcriptional-NEMO-binding domain (TAT-NBD) and caspase-1 specific inhibitor VX-765, the survival rate of astrocytes and neurons increased, whereas the protein expression of C3, NF-κB, NLRP3, activated caspase-1, and GSDMD-N decreased, and the mRNA levels of IL-1ß and IL-18 reduced. Thus, we concluded that UCB stimulates the activation of A1-like astrocytes. Inhibition of NF-κB and caspase-1 alleviated A1-like astrocytes and exerted anti-inflammatory protective effects.


Asunto(s)
Bilirrubina , FN-kappa B , Humanos , Bilirrubina/toxicidad , Bilirrubina/metabolismo , FN-kappa B/metabolismo , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Caspasa 1/metabolismo
15.
BMC Neurol ; 22(1): 491, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536324

RESUMEN

BACKGROUND: Lysine(K)-specific demethylase 5C (KDM5C) dysfunction causes X-linked syndromic intellectual developmental disorder Claes-Jensen type in male patients. The clinical presentations of female individuals with heterozygous KDM5C variations vary widely and are only now beginning to be characterized in detail. CASE PRESENTATION: Herein, we identified a novel de novo heterozygous nonsense variation of KDM5C (c.3533C > A, p.S1178X) in a sporadic 4-year-old Chinese girl, who presented with Claes-Jensen type-like phenotypes, such as moderate developmental delay, serious expressive language delay, short stature, microcephaly, and typical facial particularities. Moreover, X-chromosome inactivation (XCI) analysis showed no significant skewed X-inactivation. CONCLUSION: The report expands the genotype of KDM5C variation in female patients, delineates the phenotype of affected females in this well-known X-linked disorder, and also reinforces the necessity to consider this X-linked gene, KDM5C, in sporadic female patients.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Masculino , Femenino , Humanos , Mutación , Discapacidad Intelectual Ligada al Cromosoma X/genética , Fenotipo , Histona Demetilasas/genética
16.
Phys Chem Chem Phys ; 25(1): 203-208, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36504024

RESUMEN

Although great efforts have been dedicated to exploring hydrogenated two-dimensional (2D) materials, there are few reports about the role of hydrogenation-induced equivalent strain effects in tuning the physical properties. Here, based on density functional theory, we systematically reveal the non-negligible role of the hydrogenation-induced strain and its effects on the electronic and optical properties in single-layer (SL) h10-Si. We demonstrate that hydrogenation can trigger an electronic transition from an indirect- to a direct-band-gap semiconductor mainly due to the energy level rearrangement of the partial p orbitals caused by the equivalent strain. The electronic transition in SL h10-Si occurs at a critical hydrogenation concentration of about 87.5%. Furthermore, it is found that hydrogenation can continuously shift the light absorption peak of SL h10-Si in the photon-energy range of 1.64-2.44 eV by changing the pz-pz dipole transition. Our findings provide an example of tuning the electronic properties of 2D materials via hydrogenation-induced strain, which is important for understanding the physical mechanism of the hydrogenation-tuned physical properties of such materials.

17.
Cardiovasc Diabetol ; 21(1): 290, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572923

RESUMEN

OBJECTIVE: To evaluate the impact of stress hyperglycemia on the in-hospital prognosis in non-surgical patients with heart failure and type 2 diabetes. RESEARCH DESIGN AND METHODS: We identified non-surgical hospitalized patients with heart failure and type 2 diabetes from a large electronic medical record-based database of diabetes in China (WECODe) from 2011 to 2019. We estimated stress hyperglycemia using the stress hyperglycemia ratio (SHR) and its equation, say admission blood glucose/[(28.7 × HbA1c)- 46.7]. The primary outcomes included the composite cardiac events (combination of death during hospitalization, requiring cardiopulmonary resuscitation, cardiogenic shock, and the new episode of acute heart failure during hospitalization), major acute kidney injury (AKI stage 2 or 3), and major systemic infection. RESULTS: Of 2875 eligible Chinese adults, SHR showed U-shaped associations with composite cardiac events, major AKI, and major systemic infection. People with SHR in the third tertile (vs those with SHR in the second tertile) presented higher risks of composite cardiac events ([odds ratio, 95% confidence interval] 1.89, 1.26 to 2.87) and major AKI (1.86, 1.01 to 3.54). In patients with impaired kidney function at baseline, both SHR in the first and third tertiles anticipated higher risks of major AKI and major systemic infection. CONCLUSIONS: Both high and low SHR indicates poor prognosis during hospitalization in non-surgical patients with heart failure and type 2 diabetes.


Asunto(s)
Lesión Renal Aguda , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Hiperglucemia , Adulto , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Hiperglucemia/diagnóstico , Hiperglucemia/epidemiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/terapia , Pronóstico , Hospitales , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/terapia , Estudios Retrospectivos
18.
J Clin Med ; 11(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431169

RESUMEN

Our aim was to investigate the association of glycated haemoglobin A1c (HbA1c) variability score (HVS) with estimated glomerular filtration rate (eGFR) slope in Chinese adults living with type 2 diabetes. This cohort study included adults with type 2 diabetes attending outpatient clinics between 2011 and 2019 from a large electronic medical record-based database of diabetes in China (WECODe). We estimated the individual-level visit-to-visit HbA1c variability using HVS, a proportion of changes in HbA1c of ≥0.5% (5.5 mmol/mol). We estimated the odds of people experiencing a rapid eGFR annual decline using a logistic regression and differences across HVS categories in the mean eGFR slope using a mixed-effect model. The analysis involved 2397 individuals and a median follow-up of 4.7 years. Compared with people with HVS ≤ 20%, those with HVS of 60% to 80% had 11% higher odds of experiencing rapid eGFR annual decline, with an extra eGFR decline of 0.93 mL/min/1.73 m2 per year on average; those with HVS > 80% showed 26% higher odds of experiencing a rapid eGFR annual decline, with an extra decline of 1.83 mL/min/1.73 m2 per year on average. Chinese adults with type 2 diabetes and HVS > 60% could experience a more rapid eGFR decline.

19.
Environ Sci Technol ; 56(14): 10249-10257, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35793412

RESUMEN

Previous wastewater-based epidemiology studies on methcathinone (MC), a controlled substance in many countries, attributed its occurrence in wastewater to its misuse. However, such attribution did not consider the possibility that MC may also come from the transformation of ephedrine (EPH) and pseudo-ephedrine (PEPH). In this work, EPH/PEPH and MC in wastewater of six major Chinese cities were systematically examined. EPH/PEPH concentrations in all the cities showed clear seasonal variations, with maximum and minimum concentrations observed in winter and summer, respectively. In contrast, MC concentrations were the lowest in winter, leading to minimum concentration ratios between MC and EPH/PEPH in winter. Lack of MC seizure in the cities suggests that MC abuse could not account for the ubiquitous detection of the substance in the wastewater of these cities. Batch experiments confirmed EPH/PEPH transformation into MC in wastewater. The significantly lower transformation rate at a lower temperature was consistent with low MC concentrations in winter. These results indicate that when monitoring MC through wastewater, EPH/PEPH concentrations must be determined simultaneously to avoid false identification of MC abuse. The observed ratios of MC to EPH/PEPH concentrations in this work may be used to determine MC abuse. Alternatively, other biomarkers (e.g., cathinone) may be considered to avoid interference from EPH/PEPH transformation.


Asunto(s)
Propiofenonas , Aguas Residuales , Efedrina , Seudoefedrina
20.
Plants (Basel) ; 11(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35736719

RESUMEN

Miscanthus interspecific hybrids have been proved to have better adaptability in marginal lands than their parents. Miscanthus sacchariflorus and Miscanthus lutarioriparius were used as the parents to develop hybrids. We performed the transcriptome for 110 F1 hybrids of Miscanthus sacchariflorus × Miscanthus lutarioriparius and their parents that had been established on the Loess Plateau mine area, to estimate the population's genetic expression variation, and illuminate the adaptive mechanism of the F1 population. The result speculated that the F1 population has mainly inherited the stress response metabolic pathway of its female parent (M. sacchariflorus), which may be responsible for its higher environmental adaptability and biomass yield compared with male parents. Based on PopART, we assembled a leaf reference transcriptome for M. sacchariflorus (LRTMS) and obtained 8116 high-quality transcripts. When we analyze the differential expression of genes between F1 population and parent, 39 and 56 differentially expressed genes were screened out in the female parent and male parent, respectively. The enrichment analysis showed that pathways of carbohydrate metabolism, lipid metabolism, biosynthesis of secondary metabolites and circadian rhythm-plant played a key role in resisting the harsh environment. The carbohydrate metabolism and lipid metabolism were also significantly enriched, and the synthesis of these substances facilitated the yield. The results provided an insight into breeding Miscanthus hybrids more suited to the harsh environment of the Loess Plateau.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...