Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(43): 40911-40920, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929112

RESUMEN

The antitumor effects elicited by immune checkpoint inhibitors (ICIs) have transformed cancer treatments. However, severe immune-related adverse events (irAEs) resulting from these treatments have restricted the application of ICIs. To overcome the adverse events, we developed a tumor lesion-selective pro-PD-1Ig that is activated by proteases overexpressed in tumors. We genetically linked albumin to the N-terminus of a modified PD-1Ig (termed mutPD-1Ig hereafter) via an MMP substrate sequence to form Alb-hinge-mutPD-1Ig. We demonstrate that the binding activity of nondigested Alb-hinge-mutPD-1Ig is approximately 11-folds lower than mutPD-1Ig. However, digestion by type IV collagenase restored the binding activity of Alb-hinge-mutPD-1Ig to a level comparable to that of native mutPD-1Ig. In order to enhance the masking efficiency of Alb-mutPD-1Ig, we simulated the effects of diverse MMP substrate linkers for connecting albumin and PD-1 at various starting positions by bioinformatics tools. Our validation experiments indicate Alb-hinge-mutPD-1Ig displayed the best masking efficiency among all simulated constructs. Our study suggests that albumin may be best applicable to mask a target protein whose binding motif is centralized and in the proximity of the N-terminus of the protein.

2.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797799

RESUMEN

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499283

RESUMEN

Autoimmune hypophysitis (AH) is an autoimmune disease of the pituitary for which the pathogenesis is incompletely known. AH is often treated with corticosteroids; however, steroids may lead to considerable side effects. Using a mouse model of AH (experimental autoimmune hypophysitis, EAH), we show that interleukin-1 receptor-associated kinase 1 (IRAK1) is upregulated in the pituitaries of mice that developed EAH. We identified rosoxacin as a specific inhibitor for IRAK1 and found it could treat EAH. Rosoxacin treatment at an early stage (day 0-13) slightly reduced disease severity, whereas treatment at a later stage (day 14-27) significantly suppressed EAH. Further investigation indicated rosoxacin reduced production of autoantigen-specific antibodies. Rosoxacin downregulated production of cytokines and chemokines that may dampen T cell differentiation or recruitment to the pituitary. Finally, rosoxacin downregulated class II major histocompatibility complex expression on antigen-presenting cells that may lead to impaired activation of autoantigen-specific T cells. These data suggest that IRAK1 may play a pathogenic role in AH and that rosoxacin may be an effective drug for AH and other inflammatory diseases involving IRAK1 dysregulation.


Asunto(s)
Hipofisitis Autoinmune , Quinasas Asociadas a Receptores de Interleucina-1 , Autoantígenos , Hipofisitis Autoinmune/terapia , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Animales , Ratones
4.
Bioresour Technol ; 191: 407-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25777066

RESUMEN

Binary combinations of LEDs with four different colors were used as light sources to identify the effects of multiple wavelengths on the production of eicosapentaenoic acid (EPA) by an isolated microalga Nannochloropsis oceanica CY2. Combining LED-Blue and LED-Red could give the highest EPA productivity of 13.24 mg L(-1) d(-1), which was further enhanced to 14.4 mg L(-1) d(-1) when using semi-batch operations at a 40% medium replacement ratio. A novel photobioreactor with additional immersed light sources improved light penetration efficiency and led to an 38% (0.170-0.235 g L(-1) d(-1)) increase in the microalgae biomass productivity and a 9% decrease in electricity consumption yield of EPA (10.15-9.33 kW-h (g EPA)(-1)) when compared with the control (i.e., without immersed light sources). Operating the immersed LEDs at a flashing-frequency of 9 Hz further lowered the energy consumption yield to 8.87 kW-h (g EPA)(-1).


Asunto(s)
Reactores Biológicos , Ácido Eicosapentaenoico/biosíntesis , Luz , Microalgas/metabolismo , Fotoquímica/instrumentación
5.
Bioresour Technol ; 147: 160-167, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23994697

RESUMEN

Microalgae have emerged as promising resources for highly unsaturated fatty acids. In this study, an indigenous microalga identified as Nannochloropsis oceanica CY2 was grown photoautotrophically to produce eicosapentaenoic acid (EPA; 20:5, n-3). Specific engineering strategies were employed to stimulate EPA accumulation in the microalgal cells. The results show that BG-11 was the most effective medium to grow N. oceanica CY2, giving an EPA content and biomass concentration of 2.38% (per dry cell weight) and 1.53 g/l. The EPA content nearly doubled when using the optimal nitrogen source (NaNO3) at a concentration of 1.50 g/l. The illumination system also markedly affected the EPA content for the photoautotrophic microalga. When the microalgal culture was illuminated with a red LED, an impressively high EPA content of 5.5% was obtained. Finally, using semi-batch cultures operations with LED-blue illumination, the EPA content of N. oceanica CY2 was stably maintained at 5.0%.


Asunto(s)
Ácido Eicosapentaenoico/biosíntesis , Microalgas/metabolismo , Biomasa , Reactores Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...