Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 20(6)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029436

RESUMEN

Objective.The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control.Approach. Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure.Main results. We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance (R2= 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks (R2= 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability.Significance. This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.


Asunto(s)
Dedos , Extremidad Superior , Humanos , Proyectos Piloto , Dedos/fisiología , Mano/fisiología , Músculo Esquelético/fisiología , Fuerza de la Mano/fisiología
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 686-689, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086615

RESUMEN

Existing methods for human locomotion mode recognition often rely on using multiple bipolar electrode sensors on multiple muscle groups to accurately identify underlying motor activities. To avoid this complex setup and facilitate the translation of this technology, we introduce a single grid of high-density surface electromyography (HDsEMG) electrodes mounted on a single location (above the rectus femoris) to classify six locomotion modes in human walking. By employing a neural network, the trained model achieved average recognition accuracy of 97.7% with 160ms latency, significantly better than the model trained with one bipolar electrode pair placed on the same muscle (71.4% accuracy). To further exploit the spatial and temporal information of HDsEMG, we applied data augmentation to generate artificial data from simulated displaced electrodes, aiming to counteract the influence of electrode shifts. By employing a convolutional neural network with the enhanced dataset, the updated model was not strongly affected by electrode misplacement (93.9% accuracy) while models trained by bipolar electrode data were significantly disrupted by electrode shifts (29.4% accuracy). Findings suggest HDsEMG could be a valuable resource for mapping gait with fewer sensor locations and greater robustness. Results offer future promise for real-time control of assistive technology such as exoskeletons.


Asunto(s)
Algoritmos , Músculo Esquelético , Electrodos , Electromiografía/métodos , Humanos , Locomoción , Músculo Esquelético/fisiología
3.
IEEE Trans Biomed Eng ; 68(2): 461-469, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32746036

RESUMEN

This paper presents a versatile cable-driven robotic interface to investigate the single-joint joint neuromechanics of the hip, knee and ankle in the sagittal plane. This endpoint-based interface offers highly dynamic interaction and accurate position control (as is typically required for neuromechanics identification), and provides measurements of position, interaction force and electromyography (EMG) of leg muscles. It can be used with the subject upright, corresponding to a natural posture during walking or standing, and does not impose kinematic constraints on a joint, in contrast to existing interfaces. Mechanical evaluations demonstrated that the interface yields a rigidity above 500 N/m with low viscosity. Tests with a rigid dummy leg and linear springs show that it can identify the mechanical impedance of a limb accurately. A smooth perturbation is developed and tested with a human subject, which can be used to estimate the hip neuromechanics.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Articulación del Tobillo , Fenómenos Biomecánicos , Electromiografía , Humanos , Articulación de la Rodilla , Pierna , Músculo Esquelético
4.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1138-1145, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32217480

RESUMEN

Limb viscoelasticity is a critical neuromechanical factor used to regulate the interaction with the environment. It plays a key role in modelling human sensorimotor control, and can be used to assess the condition of healthy and neurologically affected individuals. This paper reports the estimation of hip joint viscoelasticity during voluntary force control using a novel device that applies a leg displacement without constraining the hip joint. The influence of hip angle, applied limb force and perturbation direction on the stiffness and viscosity values was studied in ten subjects. No difference was detected in the hip joint stiffness between the dominant and non-dominant legs, but a small dependency was observed on the perturbation direction. Both hip stiffness and viscosity increased monotonically with the applied force magnitude, with posture being observed to have a slight influence. These results are in line with previous measurements carried out on upper limbs, and can be used as a baseline for lower limb movement simulation and further neuromechanical investigations.


Asunto(s)
Articulación de la Cadera , Postura , Fenómenos Biomecánicos , Humanos , Movimiento , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA