Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1360998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978627

RESUMEN

Objective: To evaluate the effects of high-intensity interval training (HIIT) on glycolipid metabolism among type 2 diabetes patients. Methods: HIIT is consistent with an exercise program (65%-90%VO2max or 75%-95% HRmax; exercise cycle≥2 weeks; frequency ≥ 2 times/week). A meta-analysis was conducted utilizing the random effects model to synthesize the data. Results: A total of 22 RCT studies with 1034 diabetic patients were included. Compared to moderate-intensity aerobic exercise or conventional controls, HIIT yields noteworthy effects on FBG (MD: -0.55; 95% CI: -0.85- -0.25, Hedges' g =0.98), 2h-PG (MD: -0.36; 95% CI: -0.57- -0.14, Hedges' g =1.05), FINS (MD: -0.41; 95% CI: -0.79- -0.03, Hedges' g =1.07), HbA1c (MD: -0.60; 95% CI: -0.84- -0.36, Hedges' g =2.69), TC (MD: -0.58; 95% CI: -0.80- -0.36, Hedges' g =2.36), TG (MD: -0.50; 95% CI: -0.86- -0.14, Hedges' g =1.50), HDL (MD: 0.62; 95% CI: 0.29-0.95, Hedges' g =1.19) and LDL (MD: -0.31; 95% CI: -0.56- -0.08, Hedges' g =0.91), all of the above p<0.01. Conclusions: HIIT has been shown to improve glucose and lipid metabolism in patients with type 2 diabetes, especially in HbA1c, TC, TG, and HDL. For patients between the ages of 40 and 60 with less than 5 years of disease, exercise programs of moderate to longer duration or moderate to high intensity will produce more favorable results.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Entrenamiento de Intervalos de Alta Intensidad , Metabolismo de los Lípidos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/sangre , Entrenamiento de Intervalos de Alta Intensidad/métodos , Metabolismo de los Lípidos/fisiología , Glucemia/metabolismo , Terapia por Ejercicio/métodos , Ejercicio Físico/fisiología
2.
Sci Rep ; 14(1): 14307, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906931

RESUMEN

Breast cancer (BC) remains a significant health concern for women globally, prompting the relentless pursuit of novel therapeutic modalities. As a traditional Chinese medicine, Boswellia carterii has been extensively used to treat various cancers, such as BC. However, the anti-BC effect and underlying mechanism of Boswellia carterii remain largely unclear. The aim of this study is to explore the therapeutic effect of Boswellia carterii n-hexane extract (BCHE) against BC as well as its underlying mechanism. The present study showed that BCHE significantly suppressed the viability of human BC cells. Moreover, BCHE exhibited potent anti-BC activity in vivo with no significant toxic effects. Additionally, BCHE induced ferroptosis via increased Transferrin expression and the intracellular accumulation of Fe2+, as well as decreased glutathione peroxidase 4 (GPX4) expression and the upregulation of reactive oxygen species (ROS)-induced lipid peroxidation in BC cells. In vivo experimental results also demonstrated that BCHE effectively induced ferroptosis through GPX4 downregulation and Transferrin upregulation in tumor-bearing mice. Overall, BCHE inhibited the growth of BC cells by inducing ferroptosis mediated by modulating the iron accumulation pathway and the lipid peroxidation pathway. Therefore, BCHE could serve as a potential ferroptosis-targeting drug for treating BC.


Asunto(s)
Boswellia , Neoplasias de la Mama , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Extractos Vegetales , Transferrina , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Animales , Transferrina/metabolismo , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Boswellia/química , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Hexanos/química , Regulación hacia Abajo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C
3.
Sci Rep ; 14(1): 8139, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584168

RESUMEN

Pedestrian safety, particularly for children, relies on well-designed pathways. Child-friendly pathways play a crucial role in safeguarding young pedestrians. Shared spaces accommodating both vehicles and walkers can bring benefits to pedestrians. However, active children playing near these pathways are prone to accidents. This research aims to develop an efficient method for planning child-friendly pedestrian pathways, taking into account community development and the specific needs of children. A mixed-methods approach was employed, utilizing the Datang community in Guangzhou, China, as a case study. This approach combined drawing techniques with GIS data analysis. Drawing methods were utilized to identify points of interest for children aged 2-6. The qualitative and quantitative fuzzy analytic hierarchy process assessed factors influencing pathway planning, assigning appropriate weights. The weighted superposition analysis method constructed a comprehensive cost grid, considering various community elements. To streamline the planning process, a GIS tool was developed based on the identified factors, resulting in a practical, child-friendly pedestrian pathway network. Results indicate that this method efficiently creates child-friendly pathways, ensuring optimal connectivity within the planned road network.


Asunto(s)
Sistemas de Información Geográfica , Peatones , Humanos , Accidentes de Tránsito , Seguridad , Factores de Riesgo , Caminata
4.
Pharmacol Res ; 203: 107148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522760

RESUMEN

The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.


Asunto(s)
Microbioma Gastrointestinal , Medicina Tradicional China , Neoplasias , Humanos , Neoplasias/microbiología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/uso terapéutico
5.
Cell Death Discov ; 10(1): 112, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438362

RESUMEN

Intestinal ischemia-reperfusion (I/R) is a multifaceted pathological process, and there is a lack of clear treatment for intestinal I/R injury. During intestinal I/R, oxidative stress and inflammation triggered by cells can trigger a variety of cell death mechanisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis. These cell death processes can send a danger signal for the body to be damaged and prevent intestinal I/R injury. Therefore, identifying key regulatory molecules or markers of these cell death mechanisms when intestinal I/R injury occurs may provide valuable information for the treatment of intestinal I/R injury. This paper reviews the regulatory molecules and potential markers that may be involved in regulating cell death during intestinal I/R and elaborates on the cell death mechanism of intestinal I/R injury at the molecular level to provide a theoretical basis for discovering new molecules or markers regulating cell death during intestinal I/R injury and provides ideas for drug development for the treatment of intestinal I/R injury.

6.
Chin Med ; 19(1): 4, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183094

RESUMEN

BACKGROUND: Usenamine A, a novel natural compound initially isolated from the lichen Usnea longissima, has exhibited promising efficacy against hepatoma in prior investigation. Nevertheless, the underlying mechanisms responsible for its antihepatoma effects remain unclear. Furthermore, the role of the AKT/mechanistic target of the rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3)/inhibitor of differentiation/DNA binding 1 (ID1) signaling axis in hepatocellular carcinoma (HCC), and the potential anti-HCC effects of drugs targeting this pathway are not well understood. METHODS: CCK-8 assay was used to investigate the effects of usenamine A on the proliferation of human HCC cells. Moreover, the effects of usenamine A on the invasion ability of human HCC cells were evaluated by transwell assay. In addition, expression profiling analysis, quantitative real-time PCR, immunoblotting, immunohistochemistry (IHC) analysis, RNAi, immunoprecipitation, and chromatin immunoprecipitation (ChIP) assay were used to explore the effects of usenamine A on the newly identified AKT/mTOR/STAT3/ID1 signaling axis in human HCC cells. RESULTS: Usenamine A inhibited the proliferation and invasion of human HCC cell lines (HepG2 and SK-HEP-1). Through the analysis of gene expression profiling, we identified that usenamine A suppressed the expression of ID1 in human HCC cells. Furthermore, immunoprecipitation experiments revealed that usenamine A facilitated the degradation of the ID1 protein via the ubiquitin-proteasome pathway. Moreover, usenamine A inhibited the activity of STAT3 in human HCC cells. ChIP analysis demonstrated that STAT3 positively regulated ID1 expression at the transcriptional level in human HCC cells. The STAT3/ID1 axis played a role in mediating the anti-proliferative and anti-invasive impacts of usenamine A on human HCC cells. Additionally, usenamine A suppressed the STAT3/ID1 axis through AKT/mTOR signaling in human HCC cells. CONCLUSION: Usenamine A displayed robust anti-HCC potential, partly attributed to its capacity to downregulate the AKT/mTOR/STAT3/ID1 signaling pathway and promote ubiquitin-proteasome-mediated ID1 degradation. Usenamine A has the potential to be developed as a therapeutic agent for HCC cases characterized by abnormal AKT/mTOR/STAT3/ID1 signaling, and targeting the AKT/mTOR/STAT3 signaling pathway may be a viable option for treating patients with HCC exhibiting elevated ID1 expression.

7.
Sci Total Environ ; 912: 168914, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029986

RESUMEN

Farmland quality (FQ) evaluation is crucial to curb agricultural land's "non-grain" behavior and promote ecological nitrogen trade-off in North China. However, a promising approach to obtain the verified spatial distribution of nitrogen emissions remains to be developed, making it difficult to achieve the precise FQ estimation. Facing this issue, we present a Machine Learning (ML) - Nitrogen Export Verification (NEV) ensemble framework for the precise evaluation of FQ, taking the Beijing-Tianjin-Hebei 200 km traffic zone (zone) as the case. This was done by employing physical models for the precisely spatial estimation of Nitrogen Export (NE) values and then using ML methods to compute the spatial distribution of FQ using the Farmland Quality Evaluation System (FQES) indicators. We found: (1) the ML - NEV framework showed promising results, as the relative error of the NEV method was lower than 5.25 %, and the Determination coefficient of the ML method in FQ evaluation was higher than 0.84; (2) the FQ results within the zone were mainly good-quality areas (~47.25 % and primarily concentrated in the southwest-northeast regions) with improvement significance, with Fractal Dimension, NE values, and unbalanced Irrigation or Drainage Capabilities serving as the primary driving factors. Our results would be helpful in offering decision support for improving FQ based on refined grids, benefiting to Agribusiness Revitalization Plans (i.e., safeguarding grain yield, activating agribusiness development, Etc.) in developing countries.

8.
Adv Sci (Weinh) ; 11(9): e2303057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38098252

RESUMEN

Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.

9.
Chemosphere ; 350: 140963, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114022

RESUMEN

Previous studies have revealed links between metal(loid)s and health problems; however, the link between metal(loid)s and obesity remains controversial. We evaluated the cross-sectional association between metal(loid) exposure in whole blood and obesity among the general population. Vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), thallium (T1), and lead (Pb) were measured in 3029 subjects in Guangdong Province (China) using ICP-MS. The prevalence of overweight and obesity (OWO) and abdominal obesity (AOB) was calculated according to body mass index (BMI) and waist circumference (WC), respectively. Multivariate analysis showed that elevated blood Cu, Cd, and Pb levels were inversely associated with the risk of OWO, and these associations were confirmed by a linear dose-response relationship. Elevated blood Co concentration was associated with a decreased risk of AOB. A quantile g-computation approach showed a significantly negative mixture-effect of 13 metal(loid)s on OWO (OR: 0.96; 95% CI: 0.92, 0.99). Two metals-Ni and Mo-were inversely associated with the risk of OWO but positively associated with AOB. We cross-grouped the two obesity measurement types and found that the extremes of metal content were present in people with AOB only. In conclusion, blood Cu, Mo, Ni, Cd, and Pb were inversely associated with the risk of OWO. The presence of blood Co may be protective, while Ni and Mo exposure might increase the risk of AOB. The association between metal(loid) exposure and obesity warrants further investigation in longitudinal cohort studies.


Asunto(s)
Arsénico , Metales Pesados , Humanos , Estudios Transversales , Cadmio/análisis , Sobrepeso/epidemiología , Obesidad Abdominal/epidemiología , Plomo/análisis , Estudios Longitudinales , Arsénico/análisis , Níquel/análisis , Molibdeno/análisis , Cobalto/análisis , China/epidemiología , Metales Pesados/análisis , Monitoreo del Ambiente
10.
Sci Rep ; 13(1): 22751, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123722

RESUMEN

Plants with partial or complete loss of chlorophylls and other pigments are frequently occurring in nature but not commonly found. In the present study, we characterize a leaf color mutant 'arly01' with an albino stripe in the middle of the leaf, which is an uncommon ornamental trait in Anoectochilus roxburghii. The albino "mutant" middle portion and green "normal" leaf parts were observed by transmission electron microscopy (TEM), and their pigment contents were determined. The mutant portion exhibited underdevelopment of plastids and had reduced chlorophyll and other pigment (carotenoid, anthocyanin, and flavonoid) content compared to the normal portion. Meanwhile, comparative transcript analysis and metabolic pathways mapping showed that a total of 599 differentially expressed genes were mapped to 78 KEGG pathways, most of which were down-regulated in the mutant portion. The five most affected metabolic pathways were determined to be oxidative phosphorylation, photosynthesis system, carbon fixation & starch and sucrose metabolism, porphyrin and chlorophyll metabolism, and flavonoid biosynthesis. Our findings suggested that the mutant 'arly01' was a partial albinism of A. roxburghii, characterized by the underdevelopment of chloroplasts, low contents of photosynthetic and other color pigments, and a number of down-regulated genes and metabolites. With the emergence of ornamental A. roxburghii in southern China, 'arly01' could become a popular cultivar due to its unique aesthetics.


Asunto(s)
Clorofila , Perfilación de la Expresión Génica , Clorofila/metabolismo , Mapeo Cromosómico , Flavonoides/metabolismo , Hojas de la Planta/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Color
11.
Chin Med ; 18(1): 132, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833746

RESUMEN

Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.

12.
J Nat Prod ; 86(9): 2122-2130, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37672645

RESUMEN

The integration of NMR-metabolomic and genomic analyses can provide enhanced identification of structural properties as well as key biosynthetic information, thus achieving the targeted discovery of new natural products. For this purpose, NMR-based metabolomic profiling of the marine-derived Streptomyces sp. S063 (CGMCC 14582) was performed, by which N-methylated peptides possessing unusual negative 1H NMR chemical shift values were tracked. Meanwhile, genome mining of this strain revealed the presence of an unknown NRPS gene cluster (len) with piperazic-acid-encoding genes (lenE and lenF). Under the guidance of the combined information, two cyclic decapeptides, lenziamides D1 (1) and B1 (2), were isolated from Streptomyces sp. S063, which contains piperazic acids with negative 1H NMR values. The structures of 1 and 2 were determined by extensive spectroscopic analysis combined with Marfey's method and ECD calculations. Furthermore, we provided a detailed model of lenziamide (1 and 2) biosynthesis in Streptomyces sp. S063. In the cytotoxicity evaluation, 1 and 2 showed moderate growth inhibition against the human cancer cells HEL, H1975, H1299, and drug-resistant A549-taxol with IC50 values of 8-24 µM.


Asunto(s)
Productos Biológicos , Streptomyces , Humanos , Imagen por Resonancia Magnética , Metabolómica , Genómica , Productos Biológicos/farmacología , Streptomyces/genética
13.
Am J Chin Med ; 51(7): 1627-1651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638827

RESUMEN

The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/farmacología , Medicina Tradicional China , Proteínas de Punto de Control Inmunitario/farmacología , Receptor de Muerte Celular Programada 1 , Neoplasias/patología , Inmunoterapia , Factores de Necrosis Tumoral/farmacología , Microambiente Tumoral
14.
J Org Chem ; 88(11): 7096-7103, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37178146

RESUMEN

Three quinone-terpenoid alkaloids, alashanines A-C (1-3), possessing an unprecedented 6/6/6 tricyclic conjugated backbone and quinone-quinoline-fused characteristic, were isolated from the peeled stems of Syringa pinnatifolia. Their structures were elucidated by analysis of extensive spectroscopic data and quantum chemical calculations. A hypothesis of biosynthesis pathways for 1-3 was proposed on the basis of the potential precursor iridoid and benzoquinone. Compound 1 exhibited antibacterial activities against Bacillus subtilis and cytotoxicity against HepG2 and MCF-7 human cancer cell lines. The results of the cytotoxic mechanism revealed that compound 1 induced apoptosis of HepG2 cells through activation of ERK.


Asunto(s)
Alcaloides , Antineoplásicos , Syringa , Humanos , Syringa/química , Terpenos , Estructura Molecular , Extractos Vegetales , Alcaloides/farmacología , Benzoquinonas , Quinonas
15.
Plant Genome ; 16(3): e20348, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37194434

RESUMEN

A weak codon usage bias was found in Dendrobium catenatum (D. officiale) antimicrobial peptides (AMPs), after the analysis of relative synonymous codon usage, GC contents, and the effective number of codons. The codon usage preference was mainly influenced by natural selection pressure. The self-optimized prediction method and SWISS-MODEL were applied for peptide structural and domain analyses, and some typical antimicrobial domains were found in D. officinale AMP amino sequences, such as knot1 domain, gibberellins-stimulated domain, cupin_1 domain, defensin_like domain, and SLR1-BP (S locus-related glycoprotein 1 binding pollen coat protein) domain. To investigate the AMPs gene expression pattern, abiotic stresses, such as salt stress, drought stress, salicylic acid (SA), and methyl jasmonate (JA), were applied and the gene expression levels were detected by the real-time fluorescent quantitative polymerase chain reaction. Results showed that, even though the basic AMPs gene expressions were low, some AMPs can still be induced by salt dress, while the drought dress did not show the same impact. The SA and JA signaling pathways might be involved in most of the AMPs expressions. The natural selection of the D. officinale AMPs and thus forming diverse types of AMPs enhanced the plant's innate immunity and disease resistance capability, which would lead to a better understanding of the molecular mechanism for D. officinale adapting to the environment. The finding that salt stress, SA, and JA signaling pathways can induce AMP expression lays a foundation for the further development and functional verification of D. officinale AMPs.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Péptidos Antimicrobianos , Genes de Plantas , Genómica , Ácido Salicílico/metabolismo , Expresión Génica
16.
Phytomedicine ; 116: 154895, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37229890

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide. Myosin-9's role in HCC and the anti-HCC effect of the drugs targeting Myosin-9 remain poorly understood so far. Candidate antitumor agents obtained from natural products have attracted worldwide attention. Usenamine A is a novel product, which was first extracted in our laboratory from the lichen Usnea longissima. According to published reports, usenamine A exhibits good antitumor activity, while the mechanisms underlying its antitumor effects remain to be elucidated. PURPOSE: The present study investigated the anti-hepatoma effect of usenamine A and the underlying molecular mechanisms, along with evaluating the therapeutic potential of targeting Myosin-9 in HCC. METHODS: The CCK-8, Hoechst staining, and FACS assays were conducted in the present study to investigate how usenamine A affected the growth and apoptosis of human hepatoma cells. Moreover, TEM, acridine orange staining, and immunofluorescence assay were performed to explore the induction of autophagy by usenamine A in human hepatoma cells. The usenamine A-mediated regulation of protein expression in human hepatoma cells was analyzed using immunoblotting. MS analysis, SPR assay, CETSA, and molecular modeling were performed to identify the direct target of usenamine A. Immunofluorescence assay and co-immunoprecipitation assay were conducted to determine whether usenamine A affected the interaction between Myosin-9 and the actin present in human hepatoma cells. In addition, the anti-hepatoma effect of usenamine A was investigated in vivo using a xenograft tumor model and the IHC analysis. RESULTS: The present study initially revealed that usenamine A could suppress the proliferation of HepG2 and SK-HEP-1 cells (hepatoma cell lines). Furthermore, usenamine A induced cell apoptosis via the activation of caspase-3. In addition, usenamine A enhanced autophagy. Moreover, usenamine A administration could dramatically suppress the carcinogenic ability of HepG2 cells, as evidenced by the nude mouse xenograft tumor model. Importantly, it was initially revealed that Myosin-9 was a direct target of usenamine A. Usenamine A could block cytoskeleton remodeling through the disruption of the interaction between Myosin-9 and actin. Myosin-9 participated in suppressing proliferation while inducing apoptosis and autophagy in response to treatment with usenamine A. In addition, Myosin-9 was revealed as a potential oncogene in HCC. CONCLUSIONS: Usenamine A was initially revealed to suppress human hepatoma cells growth by interfering with the Myosin-9/actin-dependent cytoskeleton remodeling through the direct targeting of Myosin-9. Myosin-9 is, therefore, a promising candidate target for HCC treatment, while usenamine A may be utilized as a possible anti-HCC therapeutic, particularly in the treatment of HCC with aberrant Myosin-9.


Asunto(s)
Muerte Celular Autofágica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Actinas , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/patología , Apoptosis , Células Hep G2 , Proteínas del Citoesqueleto/farmacología , Proteínas del Citoesqueleto/uso terapéutico , Citoesqueleto/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Biochem Pharmacol ; 211: 115518, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966937

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is extremely malignant in nature. It is an important way to discover anti-cancer drugs from natural products at present. (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), a natural flavonoid, was isolated from Resina Draconis which is the red resin from Dracaena cochinchinensis (Lour.) S. C. Chen. However, the anti-hepatoma effect and underlying mechanisms of DHMMF remain unclear. Herein, we demonstrated that DHMMF treatment significantly inhibited the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. The IC50 value of DHMMF for HepG2 and SK-HEP-1 cells were 0.67 µM and 0.66 µM, respectively, while the IC50 value of DHMMF for human normal liver LO2 cells was 120.60 µM. DHMMF induced DNA damage, apoptosis, and G2/M phase arrest in HepG2 and SK-HEP-1 cells. Furthermore, the anti-proliferative and pro-apoptotic effects of DHMMF in human hepatoma cells were mediated by the upregulation of p21. Importantly, DHMMF exhibited potent anti-HCC efficacy in a xenograft mice model and an orthotopic mice model of liver cancer. Additionally, the combined administration of DHMMF and polo-like kinase 1 (PLK1) inhibitor BI 6727 showed a synergistic anti-HCC efficacy. Collectively, we demonstrated that DHMMF treatment induced apoptosis and G2/M phase arrest via DNA damage-driven upregulation of p21 expression in human hepatoma cells. DHMMF may serve as a promising drug candidate for HCC treatment, especially for patients of HCC with low p21 expression. Our results also suggested that DHMMF treatment in combination with PLK1 inhibitor may serve as a potential treatment strategy for patients with HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regulación hacia Arriba , Flavonoides/farmacología , Flavonoides/uso terapéutico , Proliferación Celular , Células Hep G2 , Antineoplásicos/farmacología , Apoptosis , Daño del ADN , División Celular
18.
J Sport Rehabil ; 32(4): 449-461, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791728

RESUMEN

OBJECTIVES: To explore the immediate and retention effect of real-time tibial acceleration feedback on running biomechanics during gait retraining. METHODS: Five electronic databases were searched to identify relevant studies published before May 2022. The included studies were evaluated for methodological quality and bias risk, and data were extracted. A meta-analysis was conducted on the primary outcomes, including peak tibial acceleration (PTA) and vertical ground reaction force. Subgroup analysis was performed by gender, feedback criterion, mode, dosage, fading, retention period, and running environment to evaluate the source of heterogeneity. Qualitative analysis was performed to describe other variables. RESULTS: Fourteen studies (174 participants) were eligible. Meta-analysis showed that real-time tibial acceleration feedback reduced PTA (P < .01, P < .01), vertical impact peak (P = .004, P < .01), vertical average loading rate (P < .01, P < .01), and vertical instantaneous loading rate (P < .01, P < .01) after feedback and during retention period (5 min-12 mo). Subgroup analysis showed that the immediate effect of vertical impact peak was more noticeable with mixed gender (P = .005) and fading feedback (P = .005) conditions, and the retention effect of PTA was more noticeable with high feedback dosage (P < .01) and fading feedback (P < .01) conditions. CONCLUSIONS: Real-time tibial acceleration feedback can reduce PTA and vertical ground reaction force during gait retraining, and for periods of 5 minutes to 12 months when the feedback is removed.


Asunto(s)
Fracturas por Estrés , Carrera , Humanos , Retroalimentación , Fenómenos Biomecánicos , Marcha , Aceleración
19.
Artículo en Inglés | MEDLINE | ID: mdl-36767443

RESUMEN

Studying the spatiotemporal evolution of carbon emissions from the perspective of major function-oriented zones (MFOZs) is crucial for making a carbon reduction policy. However, most previous research has ignored the spatial characteristics and MFOZ influence. Using statistical and spatial analysis tools, we explored the spatiotemporal characteristics of carbon emissions in Guangdong Province from 2001 to 2021. The following results were obtained: (1) Carbon emissions fluctuated from 2020 to 2021 because of COVID-19. (2) Over the last 20 years, the proportion of carbon emissions from urbanization development zones (UDZs) has gradually decreased, whereas those of the main agricultural production zones (MAPZs) and key ecological function zones (KEFZs) have increased. (3) Carbon emissions efficiency differed significantly among the three MFOZs. (4) Carbon emissions from coastal UDZs were increasingly apparent; however, the directional characteristics of MAPZ and KEFZ emissions were not remarkable. (5) Carbon transfer existed among the three kinds of MFOZs, resulting in the economy and carbon emissions being considerably misaligned across Guangdong Province. These results indicated that the MFOZ is noteworthy in revealing how carbon emissions evolved. Furthermore, spatiotemporal characteristics, especially spatial characteristics, can help formulate carbon reduction policies for realizing carbon peak and neutrality goals in Guangdong Province.


Asunto(s)
COVID-19 , Carbono , Humanos , Carbono/análisis , COVID-19/epidemiología , Urbanización , Agricultura , China , Dióxido de Carbono/análisis , Desarrollo Económico
20.
Clin Nurs Res ; 32(3): 629-638, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36169279

RESUMEN

This study recruited 9,830 participants to identify whether the interaction between obesity and hypertension affects the occurrence of arteriosclerosis in Chinese adults. Brachial-ankle pulse wave velocity (baPWV) was measured to diagnose arteriosclerosis. Unconditional logistic regression was used for multiplicative interaction. The additive interaction was represented by relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy (S). Hypertension was an independent risk factor for baPWV (p < .01), but obesity was not (p = .08). The interaction between obesity and hypertension on arteriosclerosis was not multiplicative (adjusted odds ratio = 0.89 (0.79-1.01), p = .07), but a negative additive interaction (RERI = -4.33, AP = -2.91, S = 0.10; p < .01) exists. Therefore, obesity may reduce the risk of arteriosclerosis caused by hypertension when hypertension and obesity coexist, especially in women and middle-aged people, which supports the obesity paradox.


Asunto(s)
Arteriosclerosis , Hipertensión , Persona de Mediana Edad , Adulto , Humanos , Femenino , Estudios Transversales , Índice Tobillo Braquial , Pueblos del Este de Asia , Análisis de la Onda del Pulso , Hipertensión/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Arteriosclerosis/complicaciones , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA