Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Brain Mapp ; 42(7): 1987-2004, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33449442

RESUMEN

Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep-learning neural network method, 3D-MEGNET, and applied it to resting-state magnetoencephalography (rs-MEG) source-magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat-deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All-frequency model, which combined delta-theta (1-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D-MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver-operator-characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta-theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta-theta and gamma-band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta-band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source-imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all-frequency model offered more discriminative power than each frequency-band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Trastornos de Combate/diagnóstico por imagen , Trastornos de Combate/fisiopatología , Conectoma/normas , Aprendizaje Profundo , Magnetoencefalografía/normas , Adulto , Conectoma/métodos , Humanos , Magnetoencefalografía/métodos , Masculino , Sensibilidad y Especificidad , Adulto Joven
2.
Cereb Cortex ; 30(1): 283-295, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31041986

RESUMEN

Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members and veterans. Recent animal studies show that GABA-ergic parvalbumin-positive interneurons are susceptible to brain injury, with damage causing abnormal increases in spontaneous gamma-band (30-80 Hz) activity. We investigated spontaneous gamma activity in individuals with mTBI using high-resolution resting-state magnetoencephalography source imaging. Participants included 25 symptomatic individuals with chronic combat-related blast mTBI and 35 healthy controls with similar combat experiences. Compared with controls, gamma activity was markedly elevated in mTBI participants throughout frontal, parietal, temporal, and occipital cortices, whereas gamma activity was reduced in ventromedial prefrontal cortex. Across groups, greater gamma activity correlated with poorer performances on tests of executive functioning and visuospatial processing. Many neurocognitive associations, however, were partly driven by the higher incidence of mTBI participants with both higher gamma activity and poorer cognition, suggesting that expansive upregulation of gamma has negative repercussions for cognition particularly in mTBI. This is the first human study to demonstrate abnormal resting-state gamma activity in mTBI. These novel findings suggest the possibility that abnormal gamma activities may be a proxy for GABA-ergic interneuron dysfunction and a promising neuroimaging marker of insidious mild head injuries.


Asunto(s)
Conmoción Encefálica/fisiopatología , Encéfalo/fisiopatología , Ritmo Gamma , Adulto , Conmoción Encefálica/psicología , Humanos , Magnetoencefalografía , Masculino , Vías Nerviosas , Pruebas Neuropsicológicas , Guerra
3.
J Neurotrauma ; 37(7): 994-1001, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31724480

RESUMEN

Mild traumatic brain injury (mTBI) accounts for the vast majority of all pediatric TBI. An important minority of children who have suffered an mTBI have enduring cognitive and emotional symptoms. However, the mechanisms of chronic symptoms in children with pediatric mTBI are not fully understood. This is in part due to the limited sensitivity of conventional neuroimaging technologies. The present study examined resting-state magnetoencephalography (rs-MEG) source images in 12 children who had mTBI and 12 age-matched control children. The rs-MEG exams were performed in children with mTBI 6 months after injury when they reported no clinically significant post-injury psychiatric changes and few if any somatic sensorimotor symptoms but did report cognitive symptoms. MEG source magnitude images were obtained for different frequency bands in alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. In contrast to the control participants, rs-MEG source imaging in the children with mTBI showed: 1) hyperactivity from the bilateral insular cortices in alpha, beta, and low-frequency bands, from the left amygdala in alpha band, and from the left precuneus in beta band; 2) hypoactivity from the bilateral dorsolateral prefrontal cortices (dlPFC) in alpha and beta bands, from the ventromedial prefrontal cortex (vmPFC) in beta band, from the ventrolateral prefrontal cortex (vlPFC) in gamma band, from the anterior cingulate cortex (ACC) in alpha band, and from the right precuneus in alpha band. The present study showed that MEG source imaging technique revealed abnormalities in the resting-state electromagnetic signals from the children with mTBI.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Magnetoencefalografía/métodos , Descanso , Adolescente , Niño , Femenino , Humanos , Magnetoencefalografía/normas , Masculino , Proyectos Piloto , Descanso/fisiología
4.
Cereb Cortex ; 29(5): 1953-1968, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668852

RESUMEN

Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.


Asunto(s)
Conmoción Encefálica/fisiopatología , Conmoción Encefálica/psicología , Encéfalo/fisiopatología , Trastornos de Combate/patología , Trastornos de Combate/fisiopatología , Memoria a Corto Plazo/fisiología , Adulto , Conmoción Encefálica/etiología , Ondas Encefálicas , Trastornos de Combate/complicaciones , Humanos , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Veteranos
5.
Phys Med Biol ; 62(3): 734-757, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28072579

RESUMEN

Superparamagnetic relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using super-conducting quantum interference device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: (1) remove trials contaminated with artifacts, (2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, (3) automatically detect and correct flux jumps, and (4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Nanopartículas de Magnetita , Imagen Molecular/métodos , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador/instrumentación , Humanos
6.
J Neurotrauma ; 34(7): 1412-1426, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27762653

RESUMEN

Blast mild traumatic brain injury (mTBI) is a leading cause of sustained impairment in military service members and veterans. However, the mechanism of persistent disability is not fully understood. The present study investigated disturbances in brain functioning in mTBI participants using a source-imaging-based approach to analyze functional connectivity (FC) from resting-state magnetoencephalography (rs-MEG). Study participants included 26 active-duty service members or veterans who had blast mTBI with persistent post-concussive symptoms, and 22 healthy control active-duty service members or veterans. The source time courses from regions of interest (ROIs) were used to compute ROI to whole-brain (ROI-global) FC for different frequency bands using two different measures: 1) time-lagged cross-correlation and 2) phase-lock synchrony. Compared with the controls, blast mTBI participants showed increased ROI-global FC in beta, gamma, and low-frequency bands, but not in the alpha band. Sources of abnormally increased FC included the: 1) prefrontal cortex (right ventromedial prefrontal cortex [vmPFC], right rostral anterior cingulate cortex [rACC]), and left ventrolateral and dorsolateral prefrontal cortex; 2) medial temporal lobe (bilateral parahippocampus, hippocampus, and amygdala); and 3) right putamen and cerebellum. In contrast, the blast mTBI group also showed decreased FC of the right frontal pole. Group differences were highly consistent across the two different FC measures. FC of the left ventrolateral prefrontal cortex correlated with executive functioning and processing speed in mTBI participants. Altogether, our findings of increased and decreased regionalpatterns of FC suggest that disturbances in intrinsic brain connectivity may be the result of multiple mechanisms, and are associated with cognitive sequelae of the injury.


Asunto(s)
Conmoción Encefálica/fisiopatología , Ondas Encefálicas/fisiología , Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Conectoma/métodos , Magnetoencefalografía/métodos , Personal Militar , Putamen/fisiopatología , Veteranos , Adulto , Amígdala del Cerebelo/fisiopatología , Traumatismos por Explosión/complicaciones , Conmoción Encefálica/etiología , Función Ejecutiva/fisiología , Humanos , Masculino , Giro Parahipocampal/fisiopatología , Síndrome Posconmocional/etiología , Síndrome Posconmocional/fisiopatología , Corteza Prefrontal/fisiopatología , Desempeño Psicomotor/fisiología , Estados Unidos , Adulto Joven
7.
Clin Neurophysiol ; 127(5): 2308-16, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27072104

RESUMEN

OBJECTIVE: Localizing expressive language function has been challenging using the conventional magnetoencephalography (MEG) source modeling methods. The present MEG study presents a new accurate and precise approach in localizing the language areas using a high-resolution MEG source imaging method. METHODS: In 32 patients with brain tumors and/or epilepsies, an object-naming task was used to evoke MEG responses. Our Fast-VESTAL source imaging method was then applied to the MEG data in order to localize the brain areas evoked by the object-naming task. RESULTS: The Fast-VESTAL results showed that Broca's area was accurately localized to the pars opercularis (BA 44) and/or the pars triangularis (BA 45) in all patients. Fast-VESTAL also accurately localized Wernicke's area to the posterior aspect of the superior temporal gyri in BA 22, as well as several additional brain areas. Furthermore, we found that the latency of the main peak of the response in Wernicke's area was significantly earlier than that of Broca's area. CONCLUSION: In all patients, Fast-VESTAL analysis established accurate and precise localizations of Broca's area, as well as other language areas. The responses in Wernicke's area were also shown to significantly precede those of Broca's area. SIGNIFICANCE: The present study demonstrates that using Fast-VESTAL, MEG can serve as an accurate and reliable functional imaging tool for presurgical mapping of language functions in patients with brain tumors and/or epilepsies.


Asunto(s)
Mapeo Encefálico/métodos , Área de Broca/fisiopatología , Magnetoencefalografía/métodos , Adulto , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Área de Broca/cirugía , Epilepsia/fisiopatología , Epilepsia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Temporal/fisiopatología , Lóbulo Temporal/cirugía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...