Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Adv Mater ; : e2405323, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718295

RESUMEN

Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.

2.
Gene ; 919: 148498, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670397

RESUMEN

Mesothelioma, an uncommon yet highly aggressive malignant neoplasm, presents challenges in the effectiveness of current therapeutic approaches. Ferroptosis, a non-apoptotic mechanism of cellular demise, exhibits a substantial association with the progression of diverse cancer forms. It is important to acknowledge that there exists a significant association between ferroptosis and the advancement of various forms of cancer. Nevertheless, the precise role of ferroptosis regulatory factors within the context of mesothelioma remains enigmatic. In our investigation, we initially scrutinized the prognostic significance of 24 ferroptosis regulatory factors in the realm of mesothelioma. Our observations unveiled that heightened expression levels of CARS1, CDKN1A, TFRC, FANCD2, FDFT1, HSPB1, SLC1A5, SLC7A11, coupled with reduced DPP4 expression, were indicative of an unfavorable prognosis. Built upon the nine previously discussed prognostic genes, the ferroptosis prognostic model offers a reliable means to forecast mesothelioma patients' survival with a substantial degree of precision. Furthermore, a notable correlation emerged between these prognostic ferroptosis regulators and parameters such as immune cell infiltration, tumor mutation burden, microsatellite instability, and PD-L1 expression in the context of mesothelioma. Within this cadre of nine ferroptosis regulatory factors with prognostic relevance, FANCD2 exhibited the most pronounced prognostic influence, as elucidated by our analyses. Subsequently, we executed a validation process employing clinical specimens sourced from our institution, thus confirming that heightened FANCD2 expression is a discernible harbinger of an adverse prognosis in the context of mesothelioma. In vitro experiments revealed that knocking down FANCD2 markedly suppressed the proliferation, migration, and ability of mesothelioma cells to attract immune cells. Furthermore, our findings also showed that reducing FANCD2 levels heightened the vulnerability of mesothelioma cells to inducers of ferroptosis. Furthermore, an extensive pan-cancer analysis uncovered a robust association between FANCD2 and the gene expression linked to immune checkpoints, thereby signifying an adverse prognosis across a broad spectrum of cancer types. Additional research is warranted to validate these findings.


Asunto(s)
Ferroptosis , Regulación Neoplásica de la Expresión Génica , Mesotelioma , Ferroptosis/genética , Humanos , Pronóstico , Mesotelioma/genética , Mesotelioma/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Sistema de Transporte de Aminoácidos y+
3.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475929

RESUMEN

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Trastornos Cerebrovasculares , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Pericitos/patología , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enfermedad de Alzheimer/patología , Trastornos Cerebrovasculares/complicaciones
4.
iScience ; 27(4): 109435, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38523796

RESUMEN

Both therapeutic hypothermia and neural stem cells (NSCs) transplantation have shown promise in neuroprotection and neural repair after brain injury. However, the effects of therapeutic hypothermia on neuronal differentiation of NSCs are not elucidated. In this study, we aimed to investigate whether mild hypothermia promoted neuronal differentiation in cultured and transplanted human NSCs (hNSCs). A significant increase in neuronal differentiation rate of hNSCs was found when exposed to 35°C, from 33% to 45% in vitro and from 7% to 15% in vivo. Additionally, single-cell RNA sequencing identified upregulation of RNA-binding motif protein 3 (RBM3) in neuroblast at 35°C, which stabilized the SRY-box transcription factor 11 (SOX11) mRNA and increased its protein expression, leading to an increase in neuronal differentiation of hNSCs. In conclusion, our study highlights that mild hypothermia at 35°C enhances hNSCs-induced neurogenesis through the novel RBM3-SOX11 signaling pathway, and provides a potential treatment strategy in brain disorders.

5.
Nat Nanotechnol ; 19(3): 376-386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158436

RESUMEN

Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood-brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Microglía , Barrera Hematoencefálica , Encéfalo , Nanopartículas/uso terapéutico
6.
Sci Adv ; 9(37): eadj3090, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703373

RESUMEN

Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.


Asunto(s)
Cobre , Prolina , Péptidos , Aminoácidos , Aminas , Catálisis
7.
J Clin Pharmacol ; 63(10): 1133-1140, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37474123

RESUMEN

Lenvatinib is a medication that targets multiple tyrosine kinases and is commonly used to treat various types of cancer. With its frequent usage, monitoring and assessing its potential adverse effects has become crucial. This study utilizes the US Food and Drug Administration Adverse Event Reporting System (FAERS) database to analyze the possible link between lenvatinib and gastrointestinal perforation. FAERS was used to analyze adverse drug reactions (ADRs) linked with lenvatinib from the first quarter of 2015 to the last quarter of 2022. The association between lenvatinib and gastrointestinal perforation was evaluated using disproportionality analyses. This study included 464 patients who developed gastrointestinal perforation after using lenvatinib. Perforation involved the entire digestive tract, with the colon among the most commonly affected perforation sites, and previously undetected esophageal perforation was frequently observed. Patients with uterine and liver cancer were at a higher risk of developing gastrointestinal perforation; patients with liver cancer experienced a shorter onset time, whereas patients with endometrial cancer had a slower onset time. Middle-aged and elderly patients exhibited a higher propensity for developing gastrointestinal perforation than younger adults. Patients with gastrointestinal perforation were found to have a significantly higher mortality rate than patients without gastrointestinal perforation. This study has identified several gastrointestinal perforation events not included in the drug instructions. It has also described the perforation site and clinical characteristics based on various types of cancer. These results could provide valuable insights for developing safer and more effective regulatory strategies concerning the use of lenvatinib.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias Hepáticas , Quinolinas , Adulto , Anciano , Persona de Mediana Edad , Estados Unidos/epidemiología , Humanos , United States Food and Drug Administration , Farmacovigilancia , Quinolinas/efectos adversos , Bases de Datos Factuales , Sistemas de Registro de Reacción Adversa a Medicamentos
8.
J Control Release ; 359: 302-314, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307923

RESUMEN

Macropinocytosis is a widely-observed and evolutionarily-conserved endocytic process found in the eukaryotic cells. In comparison to other endocytic routes, macropinocytosis allows for the internalization of greater quantities of fluid-phase drugs, making it an attractive avenue for drug delivery. Recent evidence showed that various drug delivery systems can be internalized through macropinocytosis. Utilizing macropinocytosis may therefore provide a new avenue for targeted intracellular delivery. In this review, we provide an overview into the origins and distinctive properties of macropinocytosis, summarize the roles of macropinocytosis under healthy and pathological settings. Furthermore, we highlight the biomimetic and synthetic drug delivery systems that employ macropinocytosis as the primary internalization mechanism. To facilitate the clinical applications of these drug delivery systems, additional research can be conducted to enhance the cell-type selectivity of macropinocytosis, the control of drug release at the target, and the prevention of potential toxicity. The rapidly emerging field of macropinocytosis-based targeted drug delivery and therapies holds great potential to drastically increase the efficiency and specificity of drug delivery.


Asunto(s)
Endocitosis , Pinocitosis
9.
Front Plant Sci ; 14: 1183361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384358

RESUMEN

This study presents a chromosome-level, near-complete genome assembly of Thalia dealbata (Marantaceae), a typical emergent wetland plant with high ornamental and environmental value. Based on 36.99 Gb PacBio HiFi reads and 39.44 Gb Hi-C reads, we obtained a 255.05 Mb assembly, of which 251.92 Mb (98.77%) were anchored into eight pseudo-chromosomes. Five pseudo-chromosomes were completely assembled, and the other three had one to two gaps. The final assembly had a high contig N50 value (29.80 Mb) and benchmarking universal single-copy orthologs (BUSCO) recovery score (97.52%). The T. dealbata genome had 100.35 Mb repeat sequences, 24,780 protein-coding genes, and 13,679 non-coding RNAs. Phylogenetic analysis revealed that T. dealbata was closest to Zingiber officinale, whose divergence time was approximately 55.41 million years ago. In addition, 48 and 52 significantly expanded and contracted gene families were identified within the T. dealbata genome. Moreover, 309 gene families were specific to T. dealbata, and 1,017 genes were positively selected. The T. dealbata genome reported in this study provides a valuable genomic resource for further research on wetland plant adaptation and the genome evolution dynamics. This genome is also beneficial for the comparative genomics of Zingiberales species and flowering plants.

10.
J Mater Chem B ; 11(20): 4523-4528, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161601

RESUMEN

Syphilis, caused by Treponema pallidum (T. pallidum), is associated with the oxidative stress due to its inflammation-like symptom, and detecting the reactive oxygen species (ROS) is crucial for monitoring the infectious process. Herein, we design and synthesize a perylene-based tunable fluorescent probe, PerqdOH, which can detect endogenous O2˙- during T. pallidum infection. The fluorescence peak shifted from 540 nm to 750 nm with increasing O2˙- levels. Besides, both decreased green fluorescence and enhanced red fluorescence could be observed simultaneously during the in vitro infection, providing the real-time monitoring of intracellular O2˙- caused by T. pallidum. Furthermore, the probe exhibited a remarkable signal in the treponemal lesions on the back of a rabbit model. Taken together, our synthesized PerqdOH holds great potential for application in clarifying the infectious process caused by T. pallidum in real time.


Asunto(s)
Sífilis , Treponema pallidum , Animales , Conejos , Superóxidos , Colorantes Fluorescentes , Sífilis/diagnóstico , Sífilis/patología , Inflamación
11.
ACS Infect Dis ; 9(6): 1221-1231, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37192527

RESUMEN

Syphilis is a sexually transmitted disease caused by T. pallidum, and the T. pallidum Nichols strain is widely used with the New Zealand white rabbit model for evaluating drug and vaccine protection. However, changes in the virulence of T. pallidum during transmission are still unknown. Herein, we explored the virulence of T. pallidum in the rabbit model of continuous infection through phenotype observation and further investigated the relationship between virulence and adhesion. During the construction of the syphilis rabbit model, the optimal dose of 104/site of T. pallidum was determined to effectively observe the depiction of syphilis lesions and immune responses for further virulence evaluation. Its virulence was gradually weakened during the interaction with host cells or the testicular passage, which was also proven using the pathological phenotype of the syphilis rabbit model. In addition, the adhesive ability of T. pallidum was reduced with increasing generation, which was verified via the co-incubation of the pathogen with Sf1Ep cells. This study provides insight into the relationship by which the virulence and adhesion of T. pallidum were decreased in a New Zealand white rabbit model of continuous infection and contributes to our knowledge regarding the development of syphilis.


Asunto(s)
Sífilis , Treponema pallidum , Conejos , Animales , Treponema pallidum/genética , Virulencia
12.
Small ; 19(35): e2207888, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37127878

RESUMEN

Spinal cord injury (SCI), following explosive oxidative stress, causes an abrupt and irreversible pathological deterioration of the central nervous system. Thus, preventing secondary injuries caused by reactive oxygen species (ROS), as well as monitoring and assessing the recovery from SCI are critical for the emergency treatment of SCI. Herein, an emergency treatment strategy is developed for SCI based on the selenium (Se) matrix antioxidant system to effectively inhibit oxidative stress-induced damage and simultaneously real-time evaluate the severity of SCI using a reversible dual-photoacoustic signal (680 and 750 nm). Within the emergency treatment and photoacoustic severity assessment (ETPSA) strategy, the designed Se loaded boron dipyrromethene dye with a double hydroxyl group (Se@BDP-DOH) is simultaneously used as a sensitive reporter group and an excellent antioxidant for effectively eliminating explosive oxidative stress. Se@BDP-DOH is found to promote the recovery of both spinal cord tissue and locomotor function in mice with SCI. Furthermore, ETPSA strategy synergistically enhanced ROS consumption via the caveolin 1 (Cav 1)-related pathways, as confirmed upon treatment with Cav 1 siRNA. Therefore, the ETPSA strategy is a potential tool for improving emergency treatment and photoacoustic assessment of SCI.


Asunto(s)
Selenio , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/tratamiento farmacológico , Estrés Oxidativo , Tratamiento de Urgencia
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(2): 190-196, 2023 Apr 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37056185

RESUMEN

OBJECTIVES: This study aimed to observe the color rebound and rebound rates of non-pulp discolored teeth within 1 year after routine internal bleaching to guide clinical practice and prompt prognosis. METHODS: In this work, the efficacy of bleaching was observed in 20 patients. The color of discolored teeth was measured by using a computerized colorimeter before bleaching; immediately after bleaching; and at the 1st, 3rd, 6th, 9th, and 12th months after bleaching. The L*, a*, and b* values of the color of cervical, mesial, and incisal parts of the teeth were obtained, and the color change amounts ΔE*, ΔL*, Δa*, and Δb* were calculated. The overall rebound rate (P*) and the color rebound velocity (V*) were also analyzed over time. RESULTS: In 20 patients following treatment, the average ΔE* of tooth color change was 14.99. After bleaching, the neck and middle of the teeth ΔE* and ΔL* decreased in the 1st, 3rd, 6th, 9th, and 12th months, and the differences were statistically significant. Meanwhile, from the 9th month after bleaching, the rebound speed was lower than that in the 1st month, and the difference was statistically significant. The incisal end of the tooth ΔE* and ΔL* decreased in the 6th, 9th, and 12th months after bleaching, and the differences were statistically significant. No significant difference was found in the rebound speed between time points. However, this rate settled after the 9th month, with an average color rebound rate of 30.11% in 20 patients. CONCLUSIONS: The results indicated that internal bleaching could cause a noticeable color change on pulpless teeth. The color rebound after bleaching was mainly caused by lightness (L*), which gradually decreased with time, and it was slightly related to a* and b*. The color of the teeth after internal bleaching rebounded to a certain extent with time, but the color rebound speed became stable from the 9th month. Clinically, secondary internal bleaching can be considered at this time according to whether the colors of the affected tooth and the adjacent tooth are coordinated and depending on the patient's needs.


Asunto(s)
Blanqueadores Dentales , Blanqueamiento de Dientes , Decoloración de Dientes , Diente no Vital , Diente , Humanos , Blanqueamiento de Dientes/métodos , Diente no Vital/tratamiento farmacológico , Color , Decoloración de Dientes/tratamiento farmacológico , Peróxido de Hidrógeno/uso terapéutico , Blanqueadores Dentales/uso terapéutico
15.
Emerg Med Int ; 2023: 6620157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875806

RESUMEN

Objectives: Our purpose was to investigate the influencing factors for mortality in sepsis patients without lactate levels increasing in the early stage. Methods: We conducted a retrospective observational study involving 830 adult sepsis patients admitted to ICU. We calculated time-weighted lactate (LacTW), a dynamic value that incorporates both the magnitude of change and the time interval of such change, to represent lactate levels in the first 24 hours. ROC curve was used to find the cutoff of LacTW for predicting mortality, and the influencing factors for lactate levels and mortality in the low lactate group were further studied. The primary outcome was hospital mortality. Results: Among 830 patients, LacTW > 1.975 mmo/L was found to be the cutoff threshold for predicting mortality (AUC = 0.646, P < 0.001). The following indexes related to organ dysfunction influenced LacTW: acute physiology and chronic health evaluation II (APACHE II) score (P < 0.001), activated partial thromboplastin time (APTT) (P = 0.002), total bilirubin (P = 0.012), creatinine (P = 0.037), with hypotension (P < 0.001), chronic kidney disease (P = 0.013), and required continuous renal replacement therapy (CRRT) (P < 0.001). Of the 394 patients in the low lactate group, age (P = 0.002), malignancy (P < 0.001), lactate dehydrogenase (P = 0.006), required treatment such as mechanical ventilation (P < 0.001), CRRT (P < 0.001), vasoactive drugs (P < 0.001), and glucocorticoid (P < 0.001), and failure to reach the target fluid resuscitation of 30 ml/kg within 6 hours (P = 0.003) were independently associated with hospital mortality. Conclusions: Due to the lower incidence of early organ dysfunction, lactate levels are not increased or delayed in some septic shock patients in the early stage, thus affecting the alertness of clinicians and the timeliness and adequacy of fluid resuscitation, and finally affects the prognosis.

16.
Phys Chem Chem Phys ; 25(12): 8592-8599, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883966

RESUMEN

Photocatalytic overall water splitting with two-dimensional materials is a promising strategy to solve the problems of environmental pollution and energy shortage. However, conventional photocatalysts are often limited to a narrow visible photo-absorption range, low catalytic activity, and poor charge separation. Herein, given the intrinsic polarization facilitating the improvement of photogenerated carrier separation, we adopt a polarized g-C3N5 material combining the doping strategy to alleviate the abovementioned problems. Boron (B), as a Lewis acid, has a great chance to improve the capture and catalytic activity of water. By doping B into g-C3N5, the overpotential for the complicated four-electron process of the oxygen reduction reaction is only 0.50 V. Simultaneously, the B doping-induced impurity state effectively reduces the band gap and broadens the photo-absorption range. Moreover, with the increase of B doping concentration, the photo-absorption range and catalytic activity can be gradually improved. Whereas when the concentration exceeds 33.3%, the reduction potential of the conduction band edge will not meet the demand for hydrogen evolution. Therefore, excessive doping is not recommended in experiments. Our work affords not only a promising photocatalyst but also a practical design scheme by combining polarizing materials and the doping strategy for overall water splitting.

17.
Plant Commun ; 4(5): 100564, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36809882

RESUMEN

Epiphytes with crassulacean acid metabolism (CAM) photosynthesis are widespread among vascular plants, and repeated evolution of CAM photosynthesis is a key innovation for micro-ecosystem adaptation. However, we lack a complete understanding of the molecular regulation of CAM photosynthesis in epiphytes. Here, we report a high-quality chromosome-level genome assembly of a CAM epiphyte, Cymbidium mannii (Orchidaceae). The 2.88-Gb orchid genome with a contig N50 of 22.7 Mb and 27 192 annotated genes was organized into 20 pseudochromosomes, 82.8% of which consisted of repetitive elements. Recent expansions of long terminal repeat retrotransposon families have made a major contribution to the evolution of genome size in Cymbidium orchids. We reveal a holistic scenario of molecular regulation of metabolic physiology using high-resolution transcriptomics, proteomics, and metabolomics data collected across a CAM diel cycle. Patterns of rhythmically oscillating metabolites, especially CAM-related products, reveal circadian rhythmicity in metabolite accumulation in epiphytes. Genome-wide analysis of transcript and protein level regulation revealed phase shifts during the multifaceted regulation of circadian metabolism. Notably, we observed diurnal expression of several core CAM genes (especially ßCA and PPC) that may be involved in temporal fixation of carbon sources. Our study provides a valuable resource for investigating post-transcription and translation scenarios in C. mannii, an Orchidaceae model for understanding the evolution of innovative traits in epiphytes.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Orchidaceae , Filogenia , Ecosistema , Fotosíntesis/genética , Orchidaceae/genética , Orchidaceae/metabolismo
18.
Neuron ; 111(5): 696-710.e9, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603584

RESUMEN

The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.


Asunto(s)
Lesiones Encefálicas , Microglía , Animales , Ratones , Microglía/fisiología , Linfocitos T CD8-positivos/metabolismo , Lesiones Encefálicas/patología , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Ratones Endogámicos C57BL
19.
Neuroscience ; 517: 84-95, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702373

RESUMEN

Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-ß, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-ß, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.


Asunto(s)
Sordera , Melatonina , Presbiacusia , Ratones , Animales , Interferones , Melatonina/farmacología , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa , Interleucina-6 , Transducción de Señal , Nucleotidiltransferasas/genética , Citocinas , ADN Mitocondrial/metabolismo
20.
Mol Ecol Resour ; 23(2): 424-439, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36219539

RESUMEN

Cymbidium is an orchid genus that has undergone rapid radiation and has high ornamental, economic, ecological and cultural importance, but its classification based on morphology is controversial. The plastid genome (plastome), as an extension of plant standard DNA barcodes, has been widely used as a potential molecular marker for identifying recently diverged species or complicated plant groups. In this study, we newly generated 237 plastomes of 50 species (at least two individuals per species) by genome skimming, covering 71.4% of members of the genus Cymbidium. Sequence-based analyses (barcoding gaps and automatic barcode gap discovery) and tree-based analyses (maximum likelihood, Bayesian inference and multirate Poisson tree processes model) were conducted for species identification of Cymbidium. Our work provides a comprehensive DNA barcode reference library for Cymbidium species identification. The results show that compared with standard DNA barcodes (rbcL + matK) as well as the plastid trnH-psbA, the species identification rate of the plastome increased moderately from 58% to 68%. At the same time, we propose an optimized identification strategy for Cymbidium species. The plastome cannot completely resolve the species identification of Cymbidium, the main reasons being incomplete lineage sorting, artificial cultivation, natural hybridization and chloroplast capture. To further explore the potential use of nuclear data in identifying species, the Skmer method was adopted and the identification rate increased to 72%. It appears that nuclear genome data have a vital role in species identification and are expected to be used as next-generation nuclear barcodes.


Asunto(s)
Código de Barras del ADN Taxonómico , Plantas , Humanos , Código de Barras del ADN Taxonómico/métodos , Teorema de Bayes , ADN de Plantas/genética , Plantas/genética , Plastidios/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...