Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687482

RESUMEN

The utility of geotechnical centrifuge tests depends on how correctly they predict the physical and mechanical behaviour of concrete. In this study, a model concrete material that consisted of α-gypsum plaster, fine silica sand, and water was developed. An orthogonal test design was used to evaluate the effect of the mix proportion on the model concrete performance. The physical (i.e., flowability and bleeding rate) and mechanical (i.e., compressive and flexural strength) characteristics were considered as indices. Various mix ratios resulted in remarkable relative contributions to model concrete performance, and each raw material dosage exhibited positive or negative synergy. The water-plaster ratio (W/P) and aggregate-plaster ratio (A/P) strongly influenced the mechanical and physical characteristics, respectively. Multiple linear regression analysis (MLRA) was carried out to determine a forecast model for various small-scale test demands. Finally, the applicability and outlines of the presented forecasting method in proportioning design were evaluated by typical use of model concrete in small-scale model tests.

2.
Materials (Basel) ; 16(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629904

RESUMEN

As a common molecule in biomineralization, L-aspartic acid (L-Asp) has been proven to be able to induce in vitro CaCO3 precipitation, but its application in sand reinforcement has never been studied. In this study, L-Asp was employed in sand reinforcement for the first time through the newly developed biomimetic carbonate precipitation (BCP) technique. Specimens with different number of BCP spray cycles were prepared, and a series of direct shear tests were conducted to investigate the impact of spray number on shear strength, critical displacement, and residual strength. Then a simplified power model for shear stress-displacement behavior was established and calibrated with the measured data. The results show that BCP can significantly improve the shear strength of sand. As the number of spray cycles increases, both the shear strength and residual strength increase, while the critical displacement decreases. Such variations can be described with two sigmoid models and a linear model, respectively. The simplified power model performs well in most cases, especially at higher spray numbers. This study is expected to provide a practical model for the shear behavior of BCP-treated mortar.

3.
Tzu Chi Med J ; 35(3): 213-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545802

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus behind the coronavirus disease 2019 (COVID-19) pandemic, is a type of RNA virus that is nonsegmented. Cardiovascular diseases (CVDs) increase the mortality risk of patients. In this review article, we overview the existing evidence regarding the potential mechanisms of myocardial damage in coronavirus disease 2019 (COVID-19) patients. Having a comprehensive knowledge of the cardiovascular damage caused by SARS-CoV-2 and its underlying mechanisms is essential for providing prompt and efficient treatment, ultimately leading to a reduction in mortality rates. Severe COVID-19 causes acute respiratory distress syndrome and shock in patients. In addition, awareness regarding COVID-19 cardiovascular manifestations has increased, including the adverse impact on prognosis with cardiovascular involvement. Angiotensin-converting enzyme 2 receptor may play a role in acute myocardial injury caused by SARS-CoV-2 infection. COVID-19 patients experiencing heart failure may have their condition exacerbated by various contributing factors and mechanisms. Increased oxygen demand, myocarditis, stress cardiomyopathy, elevated pulmonary pressures, and venous thrombosis are potential health issues. The combination of these factors may lead to COVID-19-related cardiogenic shock, resulting in acute systolic heart failure. Extracorporeal membrane oxygenation (ECMO) and left ventricular assist devices (LVADs) are treatment options when inotropic support fails for effective circulatory support. To ensure effective COVID-19-related cardiovascular disease (CVD) surveillance, it is crucial to closely monitor the future host adaptation, viral evolution, and transmissibility of SARS-CoV-2, given the virus's pandemic potential.

4.
Materials (Basel) ; 16(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36837170

RESUMEN

A large amount of waste slurry is generated during construction, but direct sedimentation and transportation increase construction costs. Improper treatment leads to ecological and environmental pollution. This paper proposes to reuse drilling waste slurry (DWS) as a raw material from a particular project as a grouting material for the real-time capsule grouting technique (RCG) to replace cement grouting material. This not only deals with DWS but also solves the material demand of RCG. An orthogonal experimental design evaluated the performance of the DWS grouting material (DWS-GM). The five levels for the three factors of this experiment were selected, including the fluidity, bleeding rate, initial setting time, and compression strength. A linear model, support vector machines, and neural networks were used to construct regression models, and the effects of different contents of cement, bentonite, and fly ash on the DWS-GM performance were analyzed. The SVM regression model had better performance in describing the laws of fluidity, bleeding rate, and 28-day compressive strength. Furthermore, the optimization model is proposed to obtain the optimal formulation of the DWS-GM under specific constraints. The optimization results show that the optimal formulation of the DWS-GM was 5.6% cement and 6.9% bentonite. The BL, FL, IST, and 28DCS were 1.61%, 21.87 cm, 27.05 h, and 0.22 MPa to meet the functional requirements of the DWS-GM. The above research fully proves the feasibility of the DWS reuse application. We will further reuse DWS to develop other multifunctional material applications in combination with the control needs of RCG technology and technology from other fields.

5.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36015137

RESUMEN

Intraocular pressure (IOP) is crucial to the well-being of eyes. During anesthesia, the administration of succinylcholine and endotracheal intubation are associated with an increase in IOP, which may be attenuated by short-acting opioids. However, the drug of choice among the commonly used short-acting opioids is unclear. This study aimed to evaluate the effects of fentanyl, sufentanil, alfentanil, and remifentanil on IOP measured after the administration of succinylcholine and after endotracheal intubation in patients undergoing general anesthesia. Five databases were searched. Randomized controlled trials (RCTs) that compared short-acting opioids and reported at least one of the clinical outcomes of interest were included. Nine RCTs with 357 patients were included. Remifentanil (1 µg kg-1) more effectively alleviated the increase in IOP than the placebo after the administration of succinylcholine [mean difference (MD) of IOP, -3.64; confidence interval (CI), -5.47 to -1.81 and after endotracheal intubation (MD, -9.71; CI, -11.91 to -7.51). Remifentanil (1 µg kg-1) ranked the best in terms of both attenuating the increase in IOP after the administration of succinylcholine [surface under the cumulative ranking curve (SUCRA), 0.91; normalized entropy (NE), 0.47; and after endotracheal intubation (SUCRA, 0.89; NE, 0.54) among all of the treatments. Remifentanil (1 µg kg-1) should be considered the drug of choice in the circumstances where increased IOP is a great concern.

6.
Zhong Yao Cai ; 38(8): 1671-3, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26983243

RESUMEN

OBJECTIVE: To study the chemical constituents from Macaranga denticulata Root. METHODS: The chemical constituents were isolated and purified by silica-gel column chromatography and recrystallization, and their structures were identified by physicochemical properties and spectral data. RESULTS: Nine compounds were isolated and identified as: gheddic acid (1), aleuritolic acid-3-acetate (2), ß-sitosterol (3), stigmast-4-en-6ß-ol-3 -one (4), 2α-hydroxyaleuritolic acid 3-p-hydroxybenzoate (5), scopoletin (6), daucosterol (7), 2, 6-dimethoxy-1,4-benzoquinone (8) and maslinic acid(9). CONCLUSION: Compounds 1-9 are obtained from this plant for the first time.


Asunto(s)
Euphorbiaceae/química , Fitoquímicos/análisis , Raíces de Plantas/química , Plantas Medicinales/química , Benzoquinonas , Parabenos , Escopoletina , Sitoesteroles , Estigmasterol/análogos & derivados , Triterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA