Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255940

RESUMEN

Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation.


Asunto(s)
Endopeptidasas , Meliteno , Meliteno/farmacología , Péptido Hidrolasas , Antibacterianos/farmacología , Ácidos Grasos/farmacología , Lipopéptidos
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256090

RESUMEN

The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine ß-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 µg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 µg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 µg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 µg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.


Asunto(s)
beta-Defensinas , Porcinos , Animales , Ratones , beta-Defensinas/genética , Lipopolisacáridos/farmacología , Inflamación/genética , Transducción de Señal , Antiinflamatorios
3.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139398

RESUMEN

This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.


Asunto(s)
Genoma Bacteriano , Probióticos , Animales , Femenino , Porcinos , Ratones , ARN Ribosómico 16S , Filogenia , Antibacterianos , Gelatinasas/genética , Análisis de Secuencia
4.
Antibiotics (Basel) ; 12(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37760643

RESUMEN

Microcin C7 (McC) as a viable form of antimicrobial has gained substantial attention due to its distinctive antimicrobial activity, by targeting aspartyl tRNA synthetase. McC can be a potential solution against pathogenic microbial infections in the postantibiotic era. However, considering that degradation by digestive enzymes can disrupt the function of this peptide in the gastrointestinal tract, in this study, we attempt to design McC variants to overcome several barriers that may affect its stability and biological activity. The mccA gene encoding the McC peptide precursor was mutated and 12 new McC variants with trypsin resistance were found. The Yej+rimL- strain was used as an indicator to determine the minimum inhibitory concentrations (MICs). The results showed that three variants, including R2A, R2T and R2Q, among 12 variants formed by the replacement of the second arginine of the McC peptide with different amino acids, were resistant to trypsin and had an outstanding antimicrobial ability, with MIC values of 12.5, 25, and 25 µg/mL, respectively. Taken together, our findings show that the engineering of the site-directed mutagenesis of McC significantly enhances McC trypsin resistance and maintains a great antimicrobial activity.

5.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 867-877, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36541276

RESUMEN

The present study investigated the effects of supplementing bioactive peptides derived from rapeseed protein (rapeseed peptide, Rsp) on the growth performance, serum biochemistry and faecal micro-organism composition of weaned piglets. Sixty Duroc × Landrace × Yorkshire weaned piglets of similar weights were randomly divided into three groups. The control group (NC) was fed a basal diet, and the two treatment groups, Rsp-1 and Rsp-2, were fed a basal diet supplemented with 1% or 2% Rsp, respectively, for 28 days. Each treatment consisted of five replicates with four piglets per replicate. The results showed that Rsp treatment significantly improved the average daily gain and had a better feed-to-gain ratio (p < 0.05). The diarrhoea incidence and indices of Rsp-1 and Rsp-2 groups were significantly lower than the NC group (p < 0.05), and the effect of Rsp-2 on reducing the incidence of diarrhoea was significantly higher than that of Rsp-1 (p < 0.05). The serum albumin, serum immunoglobulin A and catalase levels of the Rsp-1 and Rsp-2 groups were significantly better than the NC group (p < 0.05). Additionally, Rsp treatment significantly gained the relative abundance of faecal Lactobacillaceae and decreased the relative abundance of faecal Eubacterium_coprostanoligenes_group, Treponema and Coprococcus (p < 0.05). In summary, Rsp supplementation improved the growth performance, ameliorated the diarrhoea, enhanced the immune and antioxidant functions and changed the composition of faecal micro-organisms in piglets. These findings indicate that Rsp positively affected the health of weaned piglets.


Asunto(s)
Brassica napus , Animales , Porcinos , Suplementos Dietéticos , Dieta/veterinaria , Péptidos , Diarrea/prevención & control , Diarrea/veterinaria
6.
Obes Res Clin Pract ; 17(1): 74-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36494293

RESUMEN

AIMS: Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid ß-oxidation to change fat deposition. METHODS: In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS: Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid ß-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION: Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and ß-oxidation genes CPT1, AOX1, and UCP2.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lipólisis , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Esterol Esterasa/metabolismo , Lipasa , Ácidos Grasos , Lípidos , Células 3T3-L1
7.
Curr Issues Mol Biol ; 44(5): 2038-2053, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35678667

RESUMEN

Skeletal muscle satellite cells (SMSCs), which are multifunctional muscle-derived stem cells, can differentiate into adipocytes. Long-chain non-coding RNA (lncRNA) has diverse biological functions, including the regulation of gene expression, chromosome silencing, and nuclear transport. However, the regulatory roles and mechanism of lncRNA during adipogenic transdifferentiation in muscle cells have not been thoroughly investigated. Here, porcine SMSCs were isolated, cultured, and induced for adipogenic differentiation. The expressions of lncRNA and mRNA at different time points during transdifferentiation were analysed using RNA-seq analysis. In total, 1005 lncRNAs and 7671 mRNAs showed significant changes in expression at differential differentiation stages. Time-series expression analysis showed that the differentially expressed (DE) lncRNAs and mRNAs were clustered into 5 and 11 different profiles with different changes, respectively. GO, KEGG, and REACTOME enrichment analyses revealed that DE mRNAs with increased expressions during the trans-differentiation were mainly enriched in the pathways for lipid metabolism and fat cell differentiation. The genes with decreased expressions were mainly enriched in the regulation of cell cycle and genetic information processing. In addition, 1883 DE mRNAs were regulated by 193 DE lncRNAs, and these genes were related to the controlling in cell cycle mainly. Notably, three genes in the fatty acid binding protein (FABP) family significantly and continuously increased during trans-differentiation, and 15, 13, and 11 lncRNAs may target FABP3, FABP4, and FABP5 genes by cis- or trans-regulation, respectively. In conclusion, these studies identify a set of new potential regulator for adipogenesis and cell fate and help us in better understanding the molecular mechanisms of trans-differentiation.

8.
Zhongguo Zhen Jiu ; 42(5): 481-5, 2022 May 12.
Artículo en Chino | MEDLINE | ID: mdl-35543936

RESUMEN

OBJECTIVE: To observe the therapeutic effect of scalp-nape acupuncture for pharyngeal dysphagia of stroke at recovery stage on the basis of neuromuscular electrical stimulation (NMES) and rehabilitation training. METHODS: A total of 42 patients with pharyngeal dysphagia of stroke at recovery stage were randomized into an observation group and a control group, 21 cases in each group. Conventional medical symptomatic treatment was given in both groups. NMES and rehabilitation training were adopted in the control group, 30 min for each one. On the basis of the treatment in the control group, scalp-nape acupuncture was given in the observation group, scalp acupuncture was applied at lower 2/5 of anterior and posterior oblique lines of parietal and temporal, nape acupuncture was applied at Fengchi (GB 20), Yiming (EX-HN 14), Gongxue (Extra), Zhiqiang (Extra), Tunyan (Extra), etc. The treatment was given once a day, 5 days a week for 3 weeks in both groups. Before and after treatment, the videofluoroscopic dysphagia scale (VDS) score, the Kubota water swallowing test grade, the functional oral intake scale (FOIS) grade and the swallowing quality of life (SWAL-QOL) score were observed in both groups. RESULTS: After treatment, the VDS scores were decreased and the SWAL-QOL scores were increased compared before treatment (P<0.05), the Kubota water swallowing test grade and FOIS grade were improved compared before treatment (P<0.05) in both groups. The changes of VDS score and SWAL-QOL score, Kubota water swallowing test grade and FOIS grade in the observation group were superior to those in the control group (P<0.05). CONCLUSION: Based on NMES and rehabilitation training, scalp-nape acupuncture can enhance the therapeutic effect on pharyngeal dysphagia of stroke at recovery stage, and improve the patients' swallowing function and quality of life.


Asunto(s)
Terapia por Acupuntura , Trastornos de Deglución , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Puntos de Acupuntura , Deglución , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos , Calidad de Vida , Cuero Cabelludo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Resultado del Tratamiento , Agua
9.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563472

RESUMEN

WRINKLED1 (WRI1), an APETALA2/ethylene-responsive-element-binding protein (AP2/EREBP) subfamily transcription factor, plays a crucial role in the transcriptional regulation of plant fatty acid biosynthesis. In this study, GmWRI1a was overexpressed in the soybean cultivar 'Dongnong 50' using Agrobacterium-mediated transformation to generate three transgenic lines with high seed oil contents. PCR and Southern blotting analysis showed that the T-DNA was inserted into the genome at precise insertion sites and was stably inherited by the progeny. Expression analysis using qRT-PCR and Western blotting indicated that GmWRI1a and bar driven by the CaMV 35S promoter were significantly upregulated in the transgenic plants at different developmental stages. Transcriptome sequencing results showed there were obvious differences in gene expression between transgenic line and transgenic receptor during seed developmental stages. KEGG analysis found that the differentially expressed genes mainly annotated to metabolic pathways, such as carbohydrated metabolism and lipid metabolism. A 2-year single-location field trial revealed that three transgenic lines overexpressing GmWRI1a (GmWRI1a-OE) showed a stable increase in seed oil content of 4.97-10.35%. Importantly, no significant effect on protein content and yield was observed. Overexpression of GmWRI1a changed the fatty acid composition by increasing the linoleic acid (C18:2) content and decreasing the palmitic acid (C16:0) content in the seed. The three GmWRI1a-OE lines showed no significant changes in agronomic traits. The results demonstrated that the three GmWRI1a overexpression lines exhibited consistent increases in seed oil content compared with that of the wild type and did not significantly affect the seed yield and agronomic traits. The genetic engineering of GmWRI1a will be an effective strategy for the improvement of seed oil content and value in soybean.


Asunto(s)
Glycine max , Semillas , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Aceite de Soja/genética , Aceite de Soja/metabolismo , Glycine max/genética , Glycine max/metabolismo
10.
World Neurosurg ; 165: e1-e11, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33957285

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been shown to enhance neurological recovery after stroke. A rat middle cerebral artery occlusion model was designed to assess neuroprotective effects of stroke pretreated MSCs on cerebral ischemia/reperfusion injury. METHODS: MSCs were isolated and cultured in medium with 10% fetal bovine serum, normal control serum, or stroke serum (SS). MSCs were then injected into rats (n = 6 in each group) 1 day after middle cerebral artery occlusion, and feeding continued for 28 days. A battery of behavioral tests, 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to assess neural injury. To detect enhancement of neuronal regeneration and angiogenesis, immunofluorescence and Western blotting were performed to assess expression of trophic factors and growth factors. RESULTS: After treatment, behavior of rats improved significantly. Infarction area, brain lesion, and apoptosis cells were significantly decreased in the SS-MSCs group compared with the other groups. SS-MSCs also modulated inflammation by attenuating inflammatory cytokines. Furthermore, the number of neurogenesis-positive cells and expression of trophic factors and growth factors were significantly higher in the SS-MSCs group compared with the others. MSCs cultured with fetal bovine serum and normal control serum showed differences in expression of trophic factors and growth factors, but the results were not as good as with SS-MSCs. CONCLUSIONS: Administration of SS-MCSs after reperfusion led to neuroprotection by inducing the recovery process, including improving pathological changes, behavioral improvement, neurogenesis, suppression of apoptosis and inflammation, and angiogenesis.


Asunto(s)
Isquemia Encefálica , Células Madre Mesenquimatosas , Fármacos Neuroprotectores , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Apoptosis , Isquemia Encefálica/terapia , Citocinas/metabolismo , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/farmacología , Modelos Animales de Enfermedad , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Infarto de la Arteria Cerebral Media/terapia , Inflamación/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Bovina/farmacología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia
11.
Sci Rep ; 11(1): 11237, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045661

RESUMEN

Although the importance of the intestinal microbiota in host growth and health is well known, the relationship between microbiota colonization and muscle development is unclear. In this study, the direct causal effects of the colonization of gut microorganisms on the muscle tissue of piglets were investigated. The body weight and lean mass of germ-free (GF) piglets were approximately 40% lower than those of normal piglets. The deletion of the intestinal microbiota led to weakened muscle function and a reduction in myogenic regulatory proteins, such as MyoG and MyoD, in GF piglets. In addition, the blinded IGF1/AKT/mTOR pathway in GF piglets caused muscle atrophy and autophagy, which were characterized by the high expression of Murf-1 and KLF15. Gut microbiota introduced to GF piglets via fecal microbiota transplantation not only colonized the gut but also partially restored muscle growth and development. Furthermore, the proportion of slow-twitch muscle fibers was lower in the muscle of GF piglets, which was caused by the reduced short-chain fatty acid content in the circulation and impaired mitochondrial function in muscle. Collectively, these findings suggest that the growth, development and function of skeletal muscle in animals are mediated by the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Músculo Esquelético/fisiología , Animales , Perfilación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Porcinos , Serina-Treonina Quinasas TOR/metabolismo
12.
Front Microbiol ; 12: 623673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613491

RESUMEN

Microbiota transplantation is a rapid and effective method for changing and reshaping the intestinal microbiota and metabolic profile in humans and animals. This study compared the different influences of the introduction of fecal microbes and colonic microbes from a fat, adult pig in newborn pigs. Both colonic microbiota transplantation (CMT) and fecal microbiota transplantation (FMT) promoted growth and improved gut functions in suckling pigs up to weaning. FMT was more beneficial for body weight gain and body fat deposition in piglets, while CMT was more beneficial for intestinal health and mucosal immunity. 16S rDNA sequence analysis indicated that both CMT and FMT significantly increased the abundances of beneficial or functional bacteria, such as Lactobacillus and Prevotella_2 genera, in the piglets, and reduced the abundances of harmful bacteria, such as Escherichia-Shigella. Blood metabolome analysis showed that transplantation, especially FMT, enhanced lipid metabolism in piglets. In addition, while CMT also changed amino acid metabolism and increased anti-inflammatory metabolites such as 3-indoleacetic acid and 3-indolepropionic acid in piglets, FMT did not. Of note, FMT damaged the intestinal barrier of piglets to a certain extent and increased the levels of inflammatory factors in the blood that are potentially harmful to the health of pigs. Taken together, these results suggested that intestinal and fecal microbiota transplantations elicited similar but different physiological effects on young animals, so the application of microbiota transplantation in animal production requires the careful selection and evaluation of source bacteria.

13.
Probiotics Antimicrob Proteins ; 13(4): 1093-1105, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33486700

RESUMEN

Lactiplantibacillus plantarum subsp. plantarum 299v (L. plantarum 299v) is one of the most important probiotic strains in animal health, but the molecular mechanisms of how it exerts health benefits remain unclear. The purpose of this study was to explore the changes in miRNA expression profiles in the intestinal tissues of piglets by L. plantarum 299v and to explore its possible molecular regulatory mechanism in intestinal function. Neonatal piglets were orally administered L. plantarum 299v daily from 1 to 20 days old, and high-throughput sequencing was conducted to analyse the changes in miRNA expression in the jejunum and ileum. The results showed that 370 known porcine miRNAs were identified from eight libraries. Five miRNAs (ssc-miR-21-5p, -143-3p, -194b-5p, -192, and -126-3p) were highly expressed in the intestinal tissues. There were 15 differentially expressed miRNAs between the control group and the L. plantarum group, and only miR-450a was expressed differentially in both intestinal tissues. KEGG analysis revealed that the target genes of the 15 differentially expressed miRNAs were involved in 37 significantly enriched pathways (P < 0.01). Then, quantitative polymerase chain reaction confirmed that the miRNA expression was corresponded well with those from the sequencing. Luciferase reporter assays verified that lipopolysaccharide-induced TNF-α factor is a target of miR-450a. Our results also showed L. plantarum 299v could influence intestinal function by changing the levels of cytokines via miRNA expression. This is the first study to analyse differential expression miRNA profiles in intestinal tissue after L. plantarum 299v treatment and investigate the molecular regulatory mechanism of functional miRNA.


Asunto(s)
Lactobacillus plantarum , MicroARNs , Probióticos , Factores de Transcripción/genética , Animales , Regulación hacia Abajo , Intestinos/metabolismo , MicroARNs/genética , Porcinos
14.
Genes Genomics ; 42(11): 1327-1338, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32980994

RESUMEN

BACKGROUND: Lactobacillus reuteri I5007 possesses many excellent probiotic characteristics in piglets. miRNA plays important role in host-microbiota interactions, but the mechanism by which L. reuteri I5007 regulates intestinal function through its influence on miRNA expression is unknown. OBJECTIVE: This study analyzed the miRNA expression patterns in the ileum mucosa tissue of piglets by L. reuteri I5007 treatment, aim to clarify its molecular mechanism for regulating intestinal function through miRNA. METHODS: Neonatal piglets were orally administered L. reuteri I5007 or a placebo daily starting on day 1, and differential expression of ileal miRNAs was analyzed at 10 and 20 days of age by small RNA sequencing. RESULTS: 361 known porcine miRNAs were identified, and ten miRNAs were highly expressed in the ileum mucosa in both treatments. Nineteen differentially expressed (DE) miRNAs were identified in response to L. reuteri treatment, and four DE miRNAs (ssc-miR-196a, -196b-5p, -1285 and -10386) were differentially expressed at both time points. The KEGG pathway analyses showed the targets of 19 DE miRNAs were involved in 63 significantly enriched pathways, including the PI3K-Akt and MAPK pathways, which were confirmed to play important roles in probiotic-host communication. L. reuteri I5007 exerted anti-inflammatory effects by influencing the levels of inflammatory cytokines. Suppressor of cytokine signalling 4 gene was the target gene of ssc-miR-196a/-196b-5p, overexpression of ssc-miR-196a/-196b-5p downregulated the mRNA expression of IL-1ß and TNFα in IPEC-J2 cells. CONCLUSION: Our study provides new insight into the role of miRNAs in the intestinal function of piglets after L. reuteri I5007 treatment.


Asunto(s)
Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiología , Limosilactobacillus reuteri/genética , MicroARNs/genética , Animales , Regulación de la Expresión Génica/genética , Íleon/metabolismo , Íleon/microbiología , Limosilactobacillus reuteri/química , Probióticos/química , Probióticos/farmacología , Porcinos/genética , Porcinos/microbiología
15.
Front Vet Sci ; 7: 617259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469555

RESUMEN

The change characteristics of intestinal microbial succession and the correlation with the production of two important types of bacterial metabolites (short chain fatty acids and bioamine) in piglets during the early stage were fully explored in this study. Six piglets from different litters with the same birth time were selected, weighted and euthanized at 1, 7, 14, 21, 28, 35, and 42 days of age. During this stage, the piglets grew quickly with gradual increases in blood levels of growth hormone and insulin, and in the intestinal developmental index and immunity. 16s rRNA analysis indicated the alpha diversity of colonic microbiome community was higher than ileum. However, the composition change in the ileal microbiota was more dramatic over time. Lactobacillus genus was the dominant bacteria in piglets' ileum while Prevotella and Ruminococcaceae genera were the dominant bacteria in colon up to weaning. Gut bacterial community of the piglets showed obvious differences between the three different phases: newborn, before weaning, and post weaning. This was similar to the morphological change pattern of pigs' gut. Total SCFA content in the colon of pigs showed almost a 20-fold increase at day 42 compared to the value at day 1. The percentage of acetic acid among the total SCFAs dropped quickly from 74.5% at day 1 to 36.5% at day 42, while butyric acid and propionic acid showed significant increases at the stage. The histamine level increased and putrescine level decreased markedly in the colon with time while the amounts of total bioamines, tyramine and spermidine were devoid of changes. Dozens bacteria taxa showed highly correlations with SCFAs and bioamines. These findings provide an expanded view of the dynamic pig gut and gut microbiome at the important early growth stage.

16.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1908-1918, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31498508

RESUMEN

This study investigated the effect of Lactobacillus plantarum strain 299v on gut health in suckling piglets. Sixty newborn piglets were assigned to control and probiotic treatments, with three litters per treatment (ten piglets/litter). From days 1 to 20 of life, piglets were orally administered a placebo of 0.1% peptone or 1.0 ×  1010  CFU L. plantarum 299v daily. Six piglets per treatment were sacrificed on day 20, and intestinal tissues (including duodenum, jejunum, ileum and colon) and the intestinal contents from colon segments were collected. The results demonstrated that piglets treated with L. plantarum 299v had a lower diarrhoea incidence than the controls. L. plantarum 299v administration significantly increased the ratio of the villus height to the crypt depth in the jejunum and ileum, as well as the mRNA expression of jejunal occludin and ileal zonula occludens 1 (ZO-1). The L. plantarum treatment also increased the mRNA abundance of porcine ß-defensin 2 (pBD2) and pBD3 in the jejunum and ileum and of toll-like receptors (TLRs), such as TLR2, TLR4, TLR6 and TLR9 in the ileum, and significantly upregulated the mRNA abundances of ileal pBD1 and colonic TLR4. Additionally, the L. plantarum 299v treatment significantly changed the structure of the colonic microbiota, as evidenced by the obvious increases in the relative abundances of the phyla Firmicutes and Actinobacteria and of the genus Lactobacillus. Our findings indicate that L. plantarum 299v facilitates the gut health of suckling piglets, probably by improving the intestinal morphology and intestinal barrier function and by modifying the structure of the gut microbiota.


Asunto(s)
Animales Lactantes , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/anatomía & histología , Intestinos/microbiología , Lactobacillus plantarum , Porcinos , Administración Oral , Animales , Probióticos , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
17.
Int J Mol Sci ; 20(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366088

RESUMEN

Myoblasts could transdifferentiate into adipocytes or adipocyte-like cells, which have the capability of producing and storing intracellular lipids. Long-chain non-coding RNAs (lncRNAs) have many important physiological functions in eukaryotes, which include regulating gene expression, chromosome silencing, and nuclear transport. However, changes in the expression of lncRNAs in muscle cells during adipogenic transdifferentiation have not been investigated to date. Here, C2C12 myoblasts were seeded and then induced to undergo myogenic and adipogenic transdifferentiation. The expression profiles of lncRNAs in various differentiated cells were analyzed and then compared by digital gene expression (DGE) RNA sequencing. A total of 114 core lncRNAs from 836 differentially expressed lncRNAs in adipogenic cells were identified. Further investigation by in silico analysis revealed that the target genes of core lncRNAs significantly enriched various signaling pathways that were related to glucose and lipid metabolism and muscle growth. The lncRNA-GM43652 gene was a potential regulator of adipogenesis in muscle cells. It showed the highest levels of expression in adipogenic cells, and the knocking down lncRNA-GM43652 negatively influenced lipid deposition in transdifferentiated myoblasts. This study has identified the novel candidate regulators that may be assessed in future molecular studies on adipogenic conversion of muscle cells.


Asunto(s)
Adipocitos/citología , Diferenciación Celular , Mioblastos/citología , ARN Largo no Codificante/genética , Adipocitos/metabolismo , Animales , Línea Celular , Metabolismo de los Lípidos , Ratones , Mioblastos/metabolismo , ARN Largo no Codificante/metabolismo
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 744-755, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30822529

RESUMEN

An increasing number of studies have demonstrated that some microRNAs participate in the regulation of growth and development of adipocytes. The present study shows that microRNA-425-5p (miR-425) is a novel strong regulator of adipogenesis and adipolysis in adipocytes. Forced expression of miR-425 in mice promoted body fat accumulation and the development of obesity due to high-fat intake, whereas silencing miR-425 prevented mice from being obese. Mechanically, the expression of miR-425 is controlled by PPARγ during the adipogenesis process in adipocytes. MiR-425 overexpression resulted in a reduction in the proliferation of 3t3-L1 pre-adipocytes but significantly accelerated cellular adipogenic differentiation. Mapk14, a negative regulator of adipogenesis, was predicted and confirmed as a real target gene of miR-425. Moreover, knocking down miR-425 remarkably intensified intracellular lipolysis and promoted lipid oxidation, which is related to the activation of AMPK, a monitor for intracellular energy balance. MiR-425 activated AMPK not only by decreasing cellular ATP concentrations but also by targeting the gene of Cab39, which is an upstream co-activator of AMPK. The findings of the present study suggest that miR-425 could control adipogenesis and adipolysis in adipocytes by simultaneously triggering multidirectional targets.


Asunto(s)
Adipocitos/metabolismo , Lipogénesis , Lipólisis , MicroARNs/genética , Células 3T3-L1 , Adipogénesis , Animales , Regulación de la Expresión Génica , Ratones , Proteína Quinasa 14 Activada por Mitógenos/genética , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo
19.
Mov Disord ; 34(2): 291-297, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30589467

RESUMEN

BACKGROUND: Very recently, the MYORG gene was identified as a novel causative gene for autosomal-recessive primary familial brain calcification. OBJECTIVE: To investigate the clinical, genetic, and neuroradiological characteristics of primary familial brain calcification patients with biallelic MYORG mutations in China. METHODS: We collected clinical and neuroradiological data of 169 Chinese patients with primary familial brain calcification, including 151 sporadic patients and 18 patients from 13 families compatible with an autosomal-recessive mode of inheritance. Mutational analysis of MYORG was performed in the cohort. RESULTS: We identified four, including three novel, MYORG mutations segregating in four families with 5 patients: one nonsense mutation (c.1431C>A, p.Y477*), one missense mutation (c.687G>T, p.W229C), and two nonframeshift indels (c.348_349insCTGGCCTTCCGC, p.116_117insLAFR; c. 428_442delTGCACTTCTTCATCC, p.143_147delLHFFI). The 12-base-pair insertion, c.348_349insCTGGCCTTCCGC, was found in either homozygous or heterozygous state in 2 probands of our cohort and another Chinese primary familial brain calcification patient previously reported on in the literature. Haplotype analysis of our patients harboring the insertion indicated a founder effect in the ethnic Han Chinese population. To date, biallelic MYORG mutations have been reported in 17 patients (including our cohort). Most patients were symptomatic (13 of 17; 76.5%), and the most recurrent symptoms were movement disorders (10 of 17; 58.8%), cognitive decline (7 of 17; 41.2%), and cerebellar symptoms (6 of 17; 35.3%). All patients had calcifications on comprehensive cranial CT, most frequently located in the basal ganglia (17 of 17; 100%), cerebellum (17 of 17; 100%), subcortical white matter (14 of 17; 82.4%), and thalamus (13 of 17; 76.5%). CONCLUSIONS: We confirmed MYORG as a novel causative gene for primary familial brain calcification and further expanded the mutational and phenotypic spectrum of MYORG-related primary familial brain calcification. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Encefalopatías/genética , Calcinosis/genética , Glicósido Hidrolasas/genética , Mutación/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Adulto , Ganglios Basales/patología , China , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Femenino , Heterocigoto , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Linaje
20.
J Cell Physiol ; 233(2): 1236-1246, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28488777

RESUMEN

Tumor necrosis factor (TNF) α can induce cell apoptosis and activate nuclear transcription (NF)-κB in different cell types. Activated NF-κB further promotes or suppresses cellular apoptosis in different cases. The present study explored the effect of activated NF-κB on adipocyte apoptosis induced by TNFα and which microRNAs (miRNAs) were involved in the process. Our findings demonstrated that treatment of differentiated 3T3-L1 adipocytes with TNFα (20 ng/mL) rapidly activated NF-κB and induced moderate apoptosis. Pyrrolidinedithiocarbamic acid (PDTC, 60 µM), a specific NF-κB inhibitor, abated NF-κB activation that rendered the adipocytes vulnerable to TNFα-induced apoptosis. Dozens of miRNAs exhibited significant expression changes following TNFα treatment and the addition of PDTC. In which, miRNA-224-5p (miR-224) was up-regulated by TNFα exposure but down-regulated by PDTC addition. Furthermore, over-expression of miR-224 promoted NF-κB activation and prevented the adipocyte apoptosis induced by TNFα, while miR-224 deficiency showed the opposite effects. The TRAF-associated NF-κB activator (TANK) gene was identified as a direct target of miR-224 by computational and luciferase reporter assays. Additionally, silencing the TANK gene by the small interfering RNA similarly promoted NF-κB activation and attenuated the cellular apoptosis. In conclusion, these findings demonstrate that miR-224 plays an essential role in adipocyte apoptosis caused by TNFα through control of NF-κB activation via targeting the TANK gene.


Asunto(s)
Adipocitos/efectos de los fármacos , Apoptosis/efectos de los fármacos , MicroARNs/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , FN-kappa B/antagonistas & inhibidores , Pirrolidinas/farmacología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Tiocarbamatos/farmacología , Transcriptoma , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...