Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pharmacol Res ; : 107271, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906202

RESUMEN

Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5% of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.

2.
Phytomedicine ; 128: 155431, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537440

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Estrés del Retículo Endoplásmico , Neoplasias Pulmonares , Factores de Transcripción NFATC , Abietanos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/metabolismo , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Proto-Oncogenes Mas , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor de Muerte Celular Programada 1 , Inmunoterapia/métodos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células A549 , Ratones Desnudos , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-myc/metabolismo , Masculino , Femenino
3.
Immunol Rev ; 321(1): 128-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37553793

RESUMEN

Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Muerte Celular Inmunogénica , Antineoplásicos/uso terapéutico , Muerte Celular , Inmunoterapia
4.
Pharmacol Res ; 199: 107034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070793

RESUMEN

The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.


Asunto(s)
Productos Biológicos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
5.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6082-6087, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114215

RESUMEN

This study aimed to investigate the chemical constituents in the water extract of the whole herb of Hedyotis scandens by silica gel, ODS, and MCI column chromatographies together with preparative high-performance liquid chromatography(HPLC). The structures of isolated constituents were identified by NMR, HR-ESI-MS, etc. Thirteen compounds were isolated and identified as methyl 4-benzoyloxy-3-methoxybenzeneacetate(1), 4-benzoyloxy-3-methoxybenzeneacetic acid(2), 3-(4-hydroxy-3-methoxyphenyl)-propanoic acid(3), salicylic acid(4), 3-hydroxy-4-methoxypyridine(5), syringic acid(6), hydroxycinnamic acid(7),(R)-6-methyl-4,6-bis(4-methylpent-3-enyl)cyclohexa-1,3-dienecarbaldehyde(8), 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol(9), 1H-indole-3-carboxaldehyde(10), isoscopoletin(11), syringaresinol(12), and pinoresinol(13). Among them, compounds 1 and 2 were new phenolic acid compounds, compounds 3-5, 8-11, and 13 were isolated from this genus for the first time, and compounds 6, 7, and 12 were obtained from H. scandens for the first time. The activity test showed that compounds 1 and 10 had a certain inhibitory effect on Mycobacterium smegmatis, with MIC_(50) values of 58.5 and 33.3 µg·mL~(-1), respectively.


Asunto(s)
Medicamentos Herbarios Chinos , Hedyotis , Hedyotis/química , Medicamentos Herbarios Chinos/química , Espectroscopía de Resonancia Magnética , Ácido Salicílico
7.
Cytokine Growth Factor Rev ; 73: 173-184, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634980

RESUMEN

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles secreted from almost all types of cells including bacteria, mammals and plants, and are presumed to be mediators of intercellular communication. Bacterial extracellular vesicles (BEVs) are nanoparticles with diverse diameters, ranging from 20 to 400 nm. BEVs are composed of soluble microbial metabolites, including nucleic acid, proteins, lipoglycans, and short-chain fatty acids (SCFAs). In addition, EVs may contain quorum sensing peptides that are endowed with the ability to protect bacteria against bacteriophages, form and maintain bacterial communities, and modulate the host immune system. BEVs are potentially promising therapeutic modalities for use in vaccine development, cancer immunotherapy regimens, and drug delivery cargos. Plant-derived EVs (PEVs), such as EVs derived from herbal medicines, can be absorbed by the gut microbiota and influence the composition and homeostasis of gut microbiota. This review highlights the roles of BEVs and PEVs in bacterial and plant physiology and discusses crosstalk among gut bacteria, host metabolism and herbal medicine. In summary, EVs represent crucial communication messengers in the gut microbiota, with potential therapeutic value in the delivery of herbal medicines.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Humanos , Animales , Comunicación Celular , Homeostasis , Extractos Vegetales , Mamíferos
8.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607911

RESUMEN

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Citocinas , Subfamília D de Receptores Similares a Lectina de las Células NK
9.
Pharmacol Res ; 194: 106850, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453674

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Linfocitos T CD8-positivos , Inmunomodulación , Neoplasias Pulmonares/patología
10.
Pharmacol Res ; 191: 106739, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948327

RESUMEN

Nearly half of all Asian non-small cell lung cancer (NSCLC) patients harbour epidermal growth factor receptor (EGFR) mutations, and first-generation EGFR tyrosine kinase inhibitors (TKIs) are one of the first-line treatments that have improved the outcomes of these patients. Unfortunately, 20% of these patients can not benefit from the treatment. The basis of this primary resistance is poorly understood. Therefore, overcoming EGFR-TKI primary resistance and maintaining the efficacy of TKIs has become a key issue. ß-Elemene, a sesquiterpene compound extracted from Curcuma aromatica Salisb. (wenyujing), has shown potent antitumor effects. In this research, we found that ß-elemene combined with erlotinib enhanced the cytotoxicity of erlotinib to primary EGFR-TKI-resistant NSCLC cells with EGFR mutations and that ferroptosis was involved in the antitumor effect of the combination treatment. We found that lncRNA H19 was significantly downregulated in primary EGFR-TKI-resistant NSCLC cell lines and was upregulated by the combination treatment. Overexpression or knockdown of H19 conferred sensitivity or resistance to erlotinib, respectively, in both in vitro and in vivo studies. The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that ß-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , ARN Largo no Codificante , Sesquiterpenos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , ARN Largo no Codificante/genética , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
11.
Biomed Pharmacother ; 162: 114610, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989718

RESUMEN

BACKGROUND: Ginseng polysaccharide (GP) is one of the most abundant components in Panax ginseng. However, the absorption pathways and mechanisms of GPs have not been investigated systematically due to the challenges of their detection. METHODS: The fluorescein isothiocyanate derivative (FITC) was employed to label GP and ginseng acidic polysaccharide (GAP) to obtain target samples. HPLC-MS/MS assay was used to determine the pharmacokinetics of GP and GAP in rats. The Caco-2 cell model was used to investigate the uptake and transport mechanisms of GP and GAP in rats. RESULTS: Our results demonstrated that the absorption of GAP was more than that of GP in rats after gavage administration, while there was no significant difference between both after intravenous administration. In addition, we found that GAP and GP were more distributed in the kidney, liver and genitalia, suggesting that GAP and GP are highly targeted to the liver, kidney and genitalia. Importantly, we explored the uptake mechanism of GAP and GP. GAP and GP are endocytosed into the cell via lattice proteins or niche proteins. Both are transported lysosomally mediated to the endoplasmic reticulum (ER) and then enter the nucleus through the ER, thus completing the process of intracellular uptake and transportation. CONCLUSION: Our results confirm that the uptake of GPs by small intestinal epithelial cells is primarily mediated via lattice proteins and the cytosolic cellar. The discovery of important pharmacokinetic properties and the uncovering of the absorption mechanism provide a research rationale for the research of GP formulation and clinical promotion.


Asunto(s)
Panax , Espectrometría de Masas en Tándem , Humanos , Ratas , Animales , Células CACO-2 , Cromatografía Líquida de Alta Presión , Polisacáridos
12.
Acta Pharm Sin B ; 13(3): 1164-1179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970196

RESUMEN

Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.

13.
Semin Cancer Biol ; 88: 96-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470543

RESUMEN

Small cell lung cancer (SCLC) is characterized by a high mortality rate, rapid growth, and early metastasis, which lead to a poor prognosis. Moreover, limited clinical treatment options further lower the survival rate of patients. Therefore, novel technology and agents are urgently required to enhance clinical efficacy. In this review, from a holistic perspective, we summarized the therapeutic targets, agents and strategies with the most potential for treating SCLC, including chimeric antigen receptor (CAR) T therapy, immunomodulating antibodies, traditional Chinese medicines (TCMs), and the microbiota, which have been found recently to improve the clinical outcomes and prognosis of SCLC. Multiomics technologies can be integrated to develop effective diagnostic methods and identify new targets for new drug discovery in SCLC. We discussed in depth the feasibility, potential, and challenges of these new strategies, as well as their combinational treatments, which may provide promising alternatives for enhancing the clinical efficacy of SCLC in the future.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Inmunomodulación , Pronóstico
14.
Antioxid Redox Signal ; 38(4-6): 298-315, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36017627

RESUMEN

Significance: Microbial neurotransmitters, as potential targets for cancer therapy, are expected to provide a new perspective on the interaction between the gut microbiome and cancer immunotherapy. Recent Advances: Mounting data reveal that most neurotransmitters can be derived from gut microbiota. Furthermore, modulation of neurotransmitter signaling can limit tumor growth and enhance antitumor immunity. Critical Issues: Here, we first present the relationships between microbial neurotransmitters and cancer cells mediated by immune cells. Then, we discuss the microbial neurotransmitters recently associated with cancer immunotherapy. Notably, the review emphasizes that neurotransmitter signaling plays a substantial role in cancer immunotherapy as an emerging cancer treatment target by regulating targeted receptors and interfering with the tumor microenvironment. Future Directions: Future studies are required to uncover the antitumor mechanisms of neurotransmitter signaling to develop novel treatment strategies to overcome cancer immunotherapy resistance. Antioxid. Redox Signal. 38, 298-315.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Neoplasias/patología , Microambiente Tumoral , Inmunoterapia , Neurotransmisores
15.
Cell Death Dis ; 13(11): 931, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344505

RESUMEN

A low response rate to immune checkpoint inhibitor (ICI) therapy has impeded its clinical use. As reported previously, an inflamed tumor microenvironment (TME) was directly correlated with patients' response to immune checkpoint blockade (ICB). Thus, restoring the cytotoxic effect of immune cells in the TME is a promising way to improve the efficacy of ICB and overcome primary resistance to immunotherapy. The effect of Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) in facilitating T cell activation was determined in vitro and in vivo. Subsets of immune cells were analyzed by flow cytometry. Proteomics was carried out to comprehensively analyze the discriminated cellular kinases and transcription factors. The combinational efficacy of PA-MSHA and αPD-1 therapy was studied in vivo. In this study we demonstrated that PA-MSHA, which is a clinically used immune adjuvant, effectively induced the anti-tumor immune response and suppressed the growth of non-small cell lung cancer (NSCLC) cells. PA-MSHA showed great potential to sensitize refractory "cold" tumors to immunotherapy. It effectively enhanced macrophage M1 polarization and induced T cell activation. In vivo, in combination with αPD-1, PA-MSHA suppressed tumor growth and prolonged the survival time of allograft model mice. These results indicate that PA-MSHA is a potent agent to stimulate immune cells infiltration into the TME and consequently induces inflammation in tumors. The combination of PA-MSHA with αPD-1 is a potential strategy to enhance the clinical response rate to ICI therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Microambiente Tumoral , Línea Celular Tumoral , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Pseudomonas aeruginosa
16.
Pharmacol Res ; 182: 106282, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662630

RESUMEN

Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacología , Bacterias/metabolismo , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/patología , Microambiente Tumoral
17.
Gut ; 71(4): 734-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34006584

RESUMEN

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Muerte Celular , Microbioma Gastrointestinal/fisiología , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Quinurenina/farmacología , Ligandos , Neoplasias Pulmonares/terapia , Ratones , Panax/metabolismo , Polisacáridos/farmacología , Triptófano/farmacología
18.
Pharmacol Res ; 171: 105574, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34419228

RESUMEN

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.


Asunto(s)
Antineoplásicos Fitogénicos , Carcinoma Pulmonar de Lewis , Carcinoma de Pulmón de Células no Pequeñas , Flavonoides , Neoplasias Pulmonares , Animales , Femenino , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo
19.
Cancer Lett ; 515: 36-48, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052328

RESUMEN

Upregulated expression of immune checkpoint molecules correlates with exhausted phenotype and impaired function of cytotoxic T cells to evade host immunity. By disrupting the interaction of PD-L1 and PD1, immune checkpoint inhibitors can restore immune system function against cancer cells. Growing evidence have demonstrated apigenin and luteolin, which are flavonoids abundant in common fruits and vegetables, can suppress growth and induce apoptosis of multiple types of cancer cells with their potent anti-inflammatory, antioxidant and anticancer properties. In this study, the effects and underlying mechanisms of luteolin, apigenin, and anti-PD-1 antibody combined with luteolin or apigenin on the PD-L1 expression and anti-tumorigenesis in KRAS-mutant lung cancer were investigated. Luteolin and apigenin significantly inhibited lung cancer cell growth, induced cell apoptosis, and down-regulated the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3. Both luteolin and apigenin showed potent anti-cancer activities in the H358 xenograft and Lewis lung carcinoma model in vivo, and the treatment with monoclonal PD1 antibody enhanced the infiltration of T cells into tumor tissues. Apigenin exhibited anti-tumor activity in Genetically engineered KRASLA2 mice. In conclusion, both apigenin and luteolin significantly suppressed lung cancer with KRAS mutant proliferation, and down-regulated the IFN-γ induced PD-L1 expression. Treatment with the combination of PD-1 blockade and apigenin/luteolin has a synergistic effect and might be a prospective therapeutic strategy for NSCLC with KRAS-mutant.


Asunto(s)
Apigenina/farmacología , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Luteolina/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Interferón gamma/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos
20.
Pharmacol Res ; 169: 105656, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964470

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Activación de Linfocitos/efectos de los fármacos , Ratones Desnudos , Naftoquinonas/farmacología , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...