Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells Dev ; : 203922, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38688358

RESUMEN

A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.

3.
Nat Commun ; 14(1): 7278, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949869

RESUMEN

In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.


Asunto(s)
Cuerpos Geniculados , Neuronas , Ratones , Animales , Cuerpos Geniculados/fisiología , Neuronas/fisiología , Tálamo , Vías Visuales/fisiología , Colículos Superiores/fisiología , Mamíferos
4.
Phys Rev E ; 108(4): L042602, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978678

RESUMEN

The rheology of biological tissue is key to processes such as embryo development, wound healing, and cancer metastasis. Vertex models of confluent tissue monolayers have uncovered a spontaneous liquid-solid transition tuned by cell shape; and a shear-induced solidification transition of an initially liquidlike tissue. Alongside this jamming/unjamming behavior, biological tissue also displays an inherent viscoelasticity, with a slow time and rate-dependent mechanics. With this motivation, we combine simulations and continuum theory to examine the rheology of the vertex model in nonlinear shear across a full range of shear rates from quastistatic to fast, elucidating its nonlinear stress-strain curves after the inception of shear of finite rate, and its steady state flow curves of stress as a function of strain rate. We formulate a rheological constitutive model that couples cell shape to flow and captures both the tissue solid-liquid transition and its rich linear and nonlinear rheology.


Asunto(s)
Desarrollo Embrionario , Motivación , Forma de la Célula , Reología , Cicatrización de Heridas
5.
Front Neurorobot ; 17: 1285831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885770

RESUMEN

Using computers to replace pilot seats in air traffic control (ATC) simulators is an effective way to improve controller training efficiency and reduce training costs. To achieve this, we propose a deep reinforcement learning model, RoBERTa-RL (RoBERTa with Reinforcement Learning), for generating pilot repetitions. RoBERTa-RL is based on the pre-trained language model RoBERTa and is optimized through transfer learning and reinforcement learning. Transfer learning is used to address the issue of scarce data in the ATC domain, while reinforcement learning algorithms are employed to optimize the RoBERTa model and overcome the limitations in model generalization caused by transfer learning. We selected a real-world area control dataset as the target task training and testing dataset, and a tower control dataset generated based on civil aviation radio land-air communication rules as the test dataset for evaluating model generalization. In terms of the ROUGE evaluation metrics, RoBERTa-RL achieved significant results on the area control dataset with ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.9962, 0.992, and 0.996, respectively. On the tower control dataset, the scores were 0.982, 0.954, and 0.982, respectively. To overcome the limitations of ROUGE in this field, we conducted a detailed evaluation of the proposed model architecture using keyword-based evaluation criteria for the generated repetition instructions. This evaluation criterion calculates various keyword-based metrics based on the segmented results of the repetition instruction text. In the keyword-based evaluation criteria, the constructed model achieved an overall accuracy of 98.8% on the area control dataset and 81.8% on the tower control dataset. In terms of generalization, RoBERTa-RL improved accuracy by 56% compared to the model before improvement and achieved a 47.5% improvement compared to various comparative models. These results indicate that employing reinforcement learning strategies to enhance deep learning algorithms can effectively mitigate the issue of poor generalization in text generation tasks, and this approach holds promise for future application in other related domains.

6.
Soft Matter ; 19(48): 9389-9398, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37795526

RESUMEN

We introduce an active version of the recently proposed finite Voronoi model of epithelial tissue. The resultant Active Finite Voronoi (AFV) model enables the study of both confluent and non-confluent geometries and transitions between them, in the presence of active cells. Our study identifies six distinct phases, characterized by aggregation-segregation, dynamical jamming-unjamming, and epithelial-mesenchymal transitions (EMT), thereby extending the behavior beyond that observed in previously studied vertex-based models. The AFV model with rich phase diagram provides a cohesive framework that unifies the well-observed progression to collective motility via unjamming with the intricate dynamics enabled by EMT. This approach should prove useful for challenges in developmental biology systems as well as the complex context of cancer metastasis. The simulation code is also provided.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Movimiento Celular , Epitelio/patología , Simulación por Computador
7.
Nat Neurosci ; 26(9): 1529-1540, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524978

RESUMEN

Fluctuations in reproductive hormone levels are associated with mood disruptions in women, such as in postpartum and perimenopausal depression. However, the neural circuit mechanisms remain unclear. Here we report that medial preoptic area (MPOA) GABAergic neurons mediate multifaceted depressive-like behaviors in female mice after ovarian hormone withdrawal (HW), which can be attributed to downregulation of activity in Esr1 (estrogen receptor-1)-expressing GABAergic neurons. Enhancing activity of these neurons ameliorates depressive-like behaviors in HW-treated mice, whereas reducing their activity results in expression of these behaviors. Two separate subpopulations mediate different symptoms: a subpopulation projecting to the ventral tegmental area (VTA) mediates anhedonia and another projecting to the periaqueductal gray mediates immobility. These projections enhance activity of dopaminergic neurons in the VTA and serotonergic neurons in the dorsal raphe, respectively, with increased release of dopamine and serotonin, possibly through disinhibition mechanisms. Thus, the MPOA is a hub that mediates depressive-like behaviors resulting from transitions in reproductive hormone levels.


Asunto(s)
Área Preóptica , Área Tegmental Ventral , Ratones , Femenino , Animales , Área Preóptica/fisiología , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología
8.
J Hum Genet ; 68(9): 599-606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37198407

RESUMEN

In recent decades, upper gastrointestinal (GI) diseases have been highly prevalent worldwide. Although genome-wide association studies (GWASs) have identified thousands of susceptibility loci, only a few of them were conducted for chronic upper GI disorders, and most of them were underpowered and with small sample sizes. Additionally, for the known loci, only a tiny fraction of heritability can be explained and the underlying mechanisms and related genes remain unclear. In this study, we conducted a multi-trait analysis by the MTAG software and a two-stage transcriptome-wide association study (TWAS) with UTMOST and FUSION for seven upper GI diseases (oesophagitis, gastro-oesophageal reflux disease, other diseases of oesophagus, gastric ulcer, duodenal ulcer, gastritis and duodenitis and other diseases of stomach and duodenum) based on summary GWAS statistics from UK Biobank. In the MTAG analysis, we identified 7 loci associated with these upper GI diseases, including 3 novel ones at 4p12 (rs10029980), 12q13.13 (rs4759317) and 18p11.32 (rs4797954). In the TWAS analysis, we revealed 5 susceptibility genes in known loci and identified 12 novel potential susceptibility genes, including HOXC9 at 12q13.13. Further functional annotations and colocalization analysis indicated that rs4759317 (A>G) driven the association for GWAS signals and expression quantitative trait loci (eQTL) simultaneously at 12q13.13. The identified variant acted by decreasing the expression of HOXC9 to affect the risk of gastro-oesophageal reflux disease. This study provided insights into the genetic nature of upper GI diseases.


Asunto(s)
Reflujo Gastroesofágico , Enfermedades Gastrointestinales , Humanos , Estudio de Asociación del Genoma Completo , Bancos de Muestras Biológicas , Transcriptoma , Enfermedades Gastrointestinales/epidemiología , Enfermedades Gastrointestinales/genética , Reino Unido , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
9.
Neuron ; 111(9): 1486-1503.e7, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36893756

RESUMEN

Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.


Asunto(s)
Encéfalo , Neuronas GABAérgicas , Ratones , Animales , Sustancia Gris Periacueductal , Afecto , Señales (Psicología)
10.
Front Hum Neurosci ; 16: 902614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927996

RESUMEN

Objective: To explore alterations in white matter network topology in de novo Parkinson's disease (PD) patients with rapid eye movement sleep behavior disorder (RBD). Materials and Methods: This study included 171 de novo PD patients and 73 healthy controls (HC) recruited from the Parkinson's Progression Markers Initiative (PPMI) database. The patients were divided into two groups, PD with probable RBD (PD-pRBD, n = 74) and PD without probable RBD (PD-npRBD, N = 97), according to the RBD screening questionnaire (RBDSQ). Individual structural network of brain was constructed based on deterministic fiber tracking and analyses were performed using graph theory. Differences in global and nodal topological properties were analyzed among the three groups. After that, post hoc analyses were performed to explore further differences. Finally, correlations between significant different properties and RBDSQ scores were analyzed in PD-pRBD group. Results: All three groups presented small-world organization. PD-pRBD patients exhibited diminished global efficiency and increased shortest path length compared with PD-npRBD patients and HCs. In nodal property analyses, compared with HCs, the brain regions of the PD-pRBD group with changed nodal efficiency (Ne) were widely distributed mainly in neocortical and paralimbic regions. While compared with PD-npRBD group, only increased Ne in right insula, left middle frontal gyrus, and decreased Ne in left temporal pole were discovered. In addition, significant correlations between Ne in related brain regions and RDBSQ scores were detected in PD-pRBD patients. Conclusions: PD-pRBD patients showed disrupted topological organization of white matter in the whole brain. The altered Ne of right insula, left temporal pole and left middle frontal gyrus may play a key role in the pathogenesis of PD-RBD.

11.
Phys Rev Lett ; 128(17): 178001, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570431

RESUMEN

Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under simple shear deformation. We show that an initially undeformed fluidlike tissue acquires finite rigidity above a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical point that governs the liquid-solid transition of the undeformed system. We further show that a solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.


Asunto(s)
Elasticidad , Epitelio , Estrés Mecánico
12.
Nat Commun ; 13(1): 1194, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256596

RESUMEN

Valence detection and processing are essential for the survival of animals and their life quality in complex environments. Neural circuits underlying the transformation of external sensory signals into positive valence coding to generate appropriate behavioral responses remain not well-studied. Here, we report that somatostatin (SOM) subtype of GABAergic neurons in the mouse medial septum complex (MS), but not parvalbumin subtype or glutamatergic neurons, specifically encode reward signals and positive valence. Through an ascending pathway from the nucleus of solitary tract and then parabrachial nucleus, the MS SOM neurons receive rewarding taste signals and suppress the lateral habenula. They contribute essentially to appetitive associative learning via their projections to the lateral habenula: learning enhances their responses to reward-predictive sensory cues, and suppressing their responses to either conditioned or unconditioned stimulus impairs acquisition of reward learning. Thus, MS serves as a critical hub for transforming bottom-up sensory signals to mediate appetitive behaviors.


Asunto(s)
Habénula , Área Tegmental Ventral , Animales , Conducta Apetitiva/fisiología , Neuronas GABAérgicas/metabolismo , Habénula/fisiología , Ratones , Recompensa , Somatostatina/metabolismo , Área Tegmental Ventral/fisiología
13.
Oncol Rep ; 47(3)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35039879

RESUMEN

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Fig. 6 and the tumor images shown in Fig. 7A were strikingly similar to data appearing in different form in other articles by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in Oncology Reports 33: 981­989, 2015; DOI: 10.3892/or.2014.3657].

14.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770294

RESUMEN

Blood glucose (BG) concentration monitoring is essential for controlling complications arising from diabetes, as well as digital management of the disease. At present, finger-prick glucometers are widely used to measure BG concentrations. In consideration of the challenges of invasive BG concentration measurements involving pain, risk of infection, expense, and inconvenience, we propose a noninvasive BG concentration detection method based on the conservation of energy metabolism. In this study, a multisensor integrated detection probe was designed and manufactured by 3D-printing technology to be worn on the wrist. Two machine-learning algorithms were also applied to establish the regression model for predicting BG concentrations. The results showed that the back-propagation neural network model produced better performance than the multivariate polynomial regression model, with a mean absolute relative difference and correlation coefficient of 5.453% and 0.936, respectively. Here, about 98.413% of the predicted values were within zone A of the Clarke error grid. The above results proved the potential of our method and device for noninvasive glucose concentration detection from the human wrist.


Asunto(s)
Glucemia , Glucosa , Automonitorización de la Glucosa Sanguínea , Metabolismo Energético , Humanos , Aprendizaje Automático
15.
Nature ; 598(7879): 159-166, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616071

RESUMEN

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Asunto(s)
Corteza Motora/anatomía & histología , Corteza Motora/citología , Neuronas/clasificación , Animales , Atlas como Asunto , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Glutamatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroimagen , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Análisis de Secuencia de ARN , Análisis de la Célula Individual
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119915, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33991813

RESUMEN

Phytochromes PR and PFR distributed in different organs of plant can effectively absorb red and far-red light, respectively. Therefore, plant growth can be controlled by changing the ratio of red light to far-red light. The emission of Pr3+ (transition from 3P0→3F2,3) and Mn4+(transition from 2Eg→4A2g) is located at the red and far-red range which matches with the absorption band of PR and PFR, respectively. Herein, NaLaMgWO6:Mn4+/Pr3+/Bi3+ phosphors with improving luminescence properties via Bi3+ doping have been successfully prepared by the sol-gel method. With the variation of temperature, the photoluminescence (PL) of Pr3+/Mn4+ (corresponding to PFR/PR) of titled phosphors can be tuned, which is very useful for controlling the plant growth. Moreover, based on the fluorescence intensity ratios (FIR) of the two activator Mn4+ and Pr3+, the maximum relative sensitivity was approximately 3.39%/K at 298 K. All the results indicated that the titled phosphor is a bifunctional material for plant growth illumination with high matching phytochrome (PR and PFR) and temperature sensing with high sensitivity.


Asunto(s)
Fitocromo , Luz , Iluminación , Plantas , Termómetros
17.
Nat Commun ; 12(1): 1040, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589613

RESUMEN

Animals exhibit innate defense behaviors in response to approaching threats cued by the dynamics of sensory inputs of various modalities. The underlying neural circuits have been mostly studied in the visual system, but remain unclear for other modalities. Here, by utilizing sounds with increasing (vs. decreasing) loudness to mimic looming (vs. receding) objects, we find that looming sounds elicit stereotypical sequential defensive reactions: freezing followed by flight. Both behaviors require the activity of auditory cortex, in particular the sustained type of responses, but are differentially mediated by corticostriatal projections primarily innervating D2 neurons in the tail of the striatum and corticocollicular projections to the superior colliculus, respectively. The behavioral transition from freezing to flight can be attributed to the differential temporal dynamics of the striatal and collicular neurons in their responses to looming sound stimuli. Our results reveal an essential role of the striatum in the innate defense control.


Asunto(s)
Corteza Auditiva/fisiología , Cuerpo Estriado/fisiología , Reacción de Fuga/fisiología , Reacción Cataléptica de Congelación/fisiología , Instinto , Estimulación Acústica , Animales , Corteza Auditiva/anatomía & histología , Percepción Auditiva/fisiología , Cuerpo Estriado/anatomía & histología , Señales (Psicología) , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/fisiología , Sonido , Colículos Superiores/anatomía & histología , Colículos Superiores/fisiología
18.
Am J Transl Res ; 12(5): 1569-1583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509162

RESUMEN

Inflammatory bowel disease (IBD) is a chronic intestinal disease of unknown etiology. However, recent studies have established a pathological role of disordered intestinal microbiota and immune dysregulation. Clinical studies have suggested that the reconstruction of the normal intestinal flora in patients with IBD can reverse the dysbiosis caused by genetic, environmental, dietary, or antibiotic factors to ameliorate the symptoms of IBD. Lactobacillus reuteri is widely present in the intestines of healthy individuals and regulates the intestinal immune system, reducing inflammation through multiple mechanisms. This review summarizes the current knowledge of the role of L. reuteri in maintaining intestinal homeostasis and considers its possible value as a new therapeutic agent for patients with IBD.

19.
J Neurosci ; 40(16): 3250-3267, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32198185

RESUMEN

Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits.SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described.


Asunto(s)
Transporte Axonal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Dependovirus , Vías Nerviosas/fisiología
20.
Org Lett ; 22(5): 1858-1862, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083880

RESUMEN

We report the first highly enantio- and diastereoselective three-component Povarov reaction between anilines and aldehydes catalyzed by a chiral amine catalyst. A wide variety of substituted tetrahydroquinolines were obtained with moderate to good yields and excellent enantioselectivity and diastereoselectivity (up to 99% ee and >95:5 dr) under the reaction conditions. Furthermore, the reaction intermediates could be efficiently converted to other valuable building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...