Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cancer ; 15(5): 1257-1270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356708

RESUMEN

Changes in calcium signalling are crucial for the development of glioma cells. Whether mitochondrial calcium balance is involved in glial cell development is still unknown. Mitochondrial Calcium Uniporter (MCU) plays an important role in regulating glioma progression. In this work, we found that MCU and p38 expression were positively correlated with glioma grade and the degree tumour progression. MCU increases glioma cell migration by upregulating p38. Furthermore, p38 promotes glioma progression by activating Transcription Factor EB (TFEB)-mediated autophagy. Thus, MCU promotes glioma cell migration by activating autophagy in a p38/TFEB pathway-dependent manner, which provides a theoretical basis for new therapeutic targets for gliomas.

2.
J Digit Imaging ; 35(5): 1101-1110, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35478060

RESUMEN

To visualise the tumours inside the body on a screen, a long and thin tube is inserted with a light source and a camera at the tip to obtain video frames inside organs in endoscopy. However, multiple artefacts exist in these video frames that cause difficulty during the diagnosis of cancers. In this research, deep learning was applied to detect eight kinds of artefacts: specularity, bubbles, saturation, contrast, blood, instrument, blur, and imaging artefacts. Based on transfer learning with pre-trained parameters and fine-tuning, two state-of-the-art methods were applied for detection: faster region-based convolutional neural networks (Faster R-CNN) and EfficientDet. Experiments were implemented on the grand challenge dataset, Endoscopy Artefact Detection and Segmentation (EAD2020). To validate our approach in this study, we used phase I of 2,200 frames and phase II of 331 frames in the original training dataset with ground-truth annotations as training and testing dataset, respectively. Among the tested methods, EfficientDet-D2 achieves a score of 0.2008 (mAPd[Formula: see text]0.6+mIoUd[Formula: see text]0.4) on the dataset that is better than three other baselines: Faster-RCNN, YOLOv3, and RetinaNet, and competitive to the best non-baseline result scored 0.25123 on the leaderboard although our testing was on phase II of 331 frames instead of the original 200 testing frames. Without extra improvement techniques beyond basic neural networks such as test-time augmentation, we showed that a simple baseline could achieve state-of-the-art performance in detecting artefacts in endoscopy. In conclusion, we proposed the combination of EfficientDet-D2 with suitable data augmentation and pre-trained parameters during fine-tuning training to detect the artefacts in endoscopy.


Asunto(s)
Artefactos , Redes Neurales de la Computación , Humanos , Endoscopía , Aprendizaje Automático
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121177, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339098

RESUMEN

As a kind of reactive oxygen species, peroxynitrite is related to various diseases closely such as cancer and neurodegenerative diseases. Constructing probes with highly specific ability and a wide linear detection range for peroxynitrite detection is crucial for understanding the pathogenesis of related diseases and optimizing treatments. In this work, we developed a novel luminescent ratiometric fluorescence nanoprobe (PC-CDs) based on carbon dots and phycocyanin. PC-CDs are constructed by amidation reaction between carbon dots and phycocyanin. The nanoprobe we obtained has a good ability of distinguishing peroxynitrite from other reactive oxygen species and interfering substances. Moreover, the linear range of the nanoprobe is 0.5-100 µM and the limit of detection is 0.5 µM when detecting peroxynitrite. In the spiked recovery experiments under phosphate buffered saline (PBS) environment, our nanoprobe has a good recovery performance and the recovery is 99% - 104%, which will be beneficial to the further development of peroxynitrite testing and the research progress of related diseases. Finally, we discuss the quenching mechanism of peroxynitrite for nanoprobe, and found that there is the combination of dynamic and static quenching in the quenching process.


Asunto(s)
Carbono , Puntos Cuánticos , Fluorescencia , Colorantes Fluorescentes , Ácido Peroxinitroso , Ficocianina , Especies Reactivas de Oxígeno
4.
Small ; 18(11): e2107196, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060331

RESUMEN

Solid photothermal materials with favorable biocompatibility and modifiable mechanical properties demonstrate obvious superiority and growing demand. In this work, polydopamine (PDA) induced functionalization of regenerated silk fibroin (RSF) fibers has satisfactory photothermal conversion ability and flexibility. Based on multilevel engineering, RSF solution containing PDA nanoparticles is wet spun to PDA-incorporating RSF (PDA@RSF) fibers, and then the fibers are coated with PDA via oxidative self-polymerization of dopamine to form PDA@RSF-PDA (PRP) fibers. During the wet spinning process, PDA is to adjust the mechanical properties of RSF by affecting its hierarchical structure. Meanwhile, coated PDA gives the PRP fibers extensive absorption of near-infrared light and sunlight, which is further fabricated into PRP fibrous membranes. The temperature of PRP fibrous membranes can be adjusted and increases to about 50 °C within 360 s under 808 nm laser irradiation with a power density of 0.6 W cm-2 , and PRP fibrous membranes exhibit effective photothermal cytotoxicity both in vitro and in vivo. Under the simulated sunlight, the temperature of PRP fiber increases to more than 200 °C from room temperature and the material can generate 4.5 V voltage when assembled with a differential thermal battery, which means that the material also has the potential for flexible wearable electronic devices.


Asunto(s)
Fibroínas , Fibroínas/química , Indoles/química , Polímeros/química , Ingeniería de Tejidos
5.
Biomaterials ; 252: 120094, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32422495

RESUMEN

Healing of large calvarial bone defects remains a challenging task in the clinical setting. Although BMP2 (bone morphogenetic protein 2) is a potent growth factor that can induce bone repair, BMP2 provokes the expression of antagonist Noggin that self-restricts its bioactivity. CRISPR interference (CRISPRi) is a technology for programmable gene suppression but its application in regenerative medicine is still in its infancy. We reasoned that Nog inhibition, concurrent with BMP2 overexpression, can promote the osteogenesis of adipose-derived stem cells (ASC) and improve calvarial bone healing. We designed and exploited a hybrid baculovirus (BV) system for the delivery of BMP2 gene and CRISPRi system targeting Nog. After BV-mediated co-delivery into ASC, the system conferred prolonged BMP2 expression and stimulated Nog expression while the CRISPRi system effectively repressed Nog upregulation for at least 14 days. The CRISPRi-mediated Nog knockdown, along with BMP2 overexpression, additively stimulated the osteogenic differentiation of ASC. Implantation of the CRISPRi-engineered ASC into the critical size defects at the calvaria significantly enhanced the calvarial bone healing and matrix mineralization. These data altogether implicate the potentials of CRISPRi-mediated gene knockdown for cell fate regulation and tissue regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2 , Osteogénesis , Proteína Morfogenética Ósea 2/genética , Regeneración Ósea , Diferenciación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cráneo , Células Madre
6.
Mol Ther ; 28(2): 441-451, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31882321

RESUMEN

CRISPR activation (CRISPRa) is a burgeoning technology for programmable gene activation, but its potential for tissue regeneration has yet to be fully explored. Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into osteogenic or adipogenic pathways, which are governed by the Wnt (Wingless-related integration site) signaling cascade. To promote BMSC differentiation toward osteogenesis and improve calvarial bone healing by BMSCs, we harnessed a highly efficient hybrid baculovirus vector for gene delivery and exploited a synergistic activation mediator (SAM)-based CRISPRa system to activate Wnt10b (that triggers the canonical Wnt pathway) and forkhead c2 (Foxc2) (that elicits the noncanonical Wnt pathway) in BMSCs. We constructed a Bac-CRISPRa vector to deliver the SAM-based CRISPRa system into rat BMSCs. We showed that Bac-CRISPRa enabled CRISPRa delivery and potently activated endogenous Wnt10b and Foxc2 expression in BMSCs for >14 days. Activation of Wnt10b or Foxc2 alone was sufficient to promote osteogenesis and repress adipogenesis in vitro. Furthermore, the robust and prolonged coactivation of both Wnt10b and Foxc2 additively enhanced osteogenic differentiation while inhibiting adipogenic differentiation of BMSCs. The CRISPRa-engineered BMSCs with activated Wnt10b and Foxc2 remarkably improved the calvarial bone healing after implantation into the critical-sized calvarial defects in rats. These data implicate the potentials of CRISPRa technology for bone tissue regeneration.


Asunto(s)
Regeneración Ósea/genética , Factores de Transcripción Forkhead/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Activación Transcripcional , Proteínas Wnt/genética , Adipogénesis , Animales , Calcificación Fisiológica , Calcio/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Ratas , Cráneo/diagnóstico por imagen , Cráneo/metabolismo , Vía de Señalización Wnt , Microtomografía por Rayos X
7.
Theranostics ; 9(21): 6099-6111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534539

RESUMEN

Background: Peripheral nerve regeneration requires coordinated functions of neurotrophic factors and neuronal cells. CRISPR activation (CRISPRa) is a powerful tool that exploits inactive Cas9 (dCas9), single guide RNA (sgRNA) and transcription activator for gene activation, but has yet to be harnessed for tissue regeneration. Methods: We developed a hybrid baculovirus (BV) vector to harbor and deliver the CRISPRa system for multiplexed activation of 3 neurotrophic factor genes (BDNF, GDNF and NGF). The hybrid BV was used to transduce rat adipose-derived stem cells (ASC) and functionalize the ASC sheets. We further implanted the ASC sheets into sciatic nerve injury sites in rats. Results: Transduction of rat ASC with the hybrid BV vector enabled robust, simultaneous and prolonged activation of the 3 neurotrophic factors for at least 21 days. The CRISPRa-engineered ASC sheets were able to promote Schwann cell (SC) migration, neuron proliferation and neurite outgrowth in vitro. The CRISPRa-engineered ASC sheets further enhanced in vivo functional recovery, nerve reinnervation, axon regeneration and remyelination. Conclusion: These data collectively implicated the potentials of the hybrid BV-delivered CRISPRa system for multiplexed activation of endogenous neurotrophic factor genes in ASC sheets to promote peripheral nerve regeneration.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa , Adipocitos/fisiología , Tejido Adiposo , Animales , Axones/fisiología , Baculoviridae/genética , Movimiento Celular , Proliferación Celular , Femenino , Células Madre Mesenquimatosas , Factores de Crecimiento Nervioso/genética , Neuronas/fisiología , Nervios Periféricos/fisiología , ARN Guía de Kinetoplastida/genética , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Células de Schwann/fisiología , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA