Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400059, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538294

RESUMEN

Many crucial components inside electronic devices are made from non-renewable, non-biodegradable, and potentially toxic materials, leading to environmental damage. Finding alternative green dielectric materials is mandatory to align with global sustainable goals. Carboxymethyl cellulose (CMC) is a bio-polymer derived from cellulose and has outstanding properties. Herein, citric acid, dextrin, and CMC based hydrogels are prepared, which are biocompatible and biodegradable and exhibit rubber-like mechanical properties, with Young modulus values of 0.89 MPa. Hence, thin film CMC-based hydrogel is explored as a suitable green high-k dielectric candidate for operation at low voltages, demonstrating a high dielectric constant of up to 78. These fabricated transistors reveal stable high capacitance (2090 nF cm-2) for ≈±3 V operation. Using a polyelectrolyte-type approach and poly-(2-vinyl anthracene) (PVAn) surface modification, this study demonstrates a thin dielectric layer (d ≈30 nm) with a small voltage threshold (Vth ≈-0.8 V), moderate transconductance (gm ≈65 nS), and high ON-OFF ratio (≈105). Furthermore, the dielectric layer exhibits stable performance under bias stress of ± 3.5 V and 100 cycles of switching tests. The modified CMC-based hydrogel demonstrates desirable performance as a green dielectric for low-voltage operation, further highlighting its biocompatibility.

2.
Sci Rep ; 13(1): 21230, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040821

RESUMEN

Oyster Farming is one of important fisheries and aquaculture industries in Taiwan. Each year, approximately 4000-5000 tons of discarded bamboo scaffolding (BS) used in oyster farming, are generated, so the treatment and utilization of BS should be taken seriously. This study evaluates the suitability of BS for pulp and papermaking by assessing the chemical compositions, microstructural, and fiber morphology. The pulping properties is investigated by soda pulping. The chemical composition of BS shows the potential for application in pulping. The BS microstructure shows that can enhance pulping reactions, while the fiber morphology indicates the possibility of producing high-strength paper. Through the pulping experiment, it demonstrated that BS is suitable for pulping with lower NaOH dosage and longer digestion time. The condition at 170 °C with 14% NaOH dosage for 90 min digestion has the highest yield. After refining the highest pulping yield BS pulp, it can improve the handsheet strength and bulk of the OCC-BS mixed pulp, which can achieve the strength property required for industrial paper. In summary, BS exhibits the potential for pulping application and produces a better paper strength than OCC pulp, exhibiting the feasibility of enhancing the circular utilization value of BS in Taiwan.


Asunto(s)
Celulosa , Papel , Hidróxido de Sodio/química , Celulosa/química , Industrias , Agricultura
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499466

RESUMEN

Single-cell sequencing provides promising information in tumor evolution and heterogeneity. Even with the recent advances in circulating tumor cell (CTC) technologies, it remains a big challenge to precisely and effectively isolate CTCs for downstream analysis. The Cell RevealTM system integrates an automatic CTC enrichment and staining machine, an AI-assisted automatic CTC scanning and identification system, and an automatic cell picking machine for CTC isolation. H1975 cell line was used for the spiking test. The identification of CTCs and the isolation of target CTCs for genetic sequencing were performed from the peripheral blood of three cancer patients, including two with lung cancer and one with both lung cancer and thyroid cancer. The spiking test revealed a mean recovery rate of 81.81% even with extremely low spiking cell counts with a linear relationship between the spiked cell counts and the recovered cell counts (Y = 0.7241 × X + 19.76, R2 = 0.9984). The three cancer patients had significantly higher TTF-1+ CTCs than healthy volunteers. All target CTCs were successfully isolated by the Cell Picker machine for a subsequent genetic analysis. Six tumor-associated mutations in four genes were detected. The present study reveals the Cell RevealTM platform can precisely identify and isolate target CTCs and then successfully perform single-cell sequencing by using commercially available genetic devices.


Asunto(s)
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Separación Celular , Línea Celular Tumoral , Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares/genética
4.
Nat Commun ; 13(1): 6385, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302784

RESUMEN

Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.


Asunto(s)
Activación Neutrófila , Neutrófilos , Receptor PAR-2 , Receptores Acoplados a Proteínas G , Humanos , Inflamación/patología , Mieloblastina/metabolismo , Activación Neutrófila/fisiología , Fagocitosis , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Cell Dev Biol ; 8: 414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528962

RESUMEN

FAM46A belongs to the FAM46 subfamily of the nucleotidyltransferase-fold superfamily and is predicted to be a non-canonical poly(A) polymerase. FAM46A has been linked to several human disorders including retinitis pigmentosa, bone abnormality, cancer, and obesity. However, its molecular and functional characteristics are largely unknown. We herein report that FAM46A is expressed in cells of the hematopoietic system and plays a role in hemin-induced hemoglobinization. FAM46A is a nucleocytoplasmic shuttle protein modified by Tyr-phosphorylation only in the cytosol, where it is closely associated with ER. On the other hand, it is located proximal to the chromatin regions of active transcription in the nucleus. FAM46A is a cell cycle-dependent poly-ubiquitinated short-lived protein degraded mostly by proteasome and its overexpression inhibits cell growth and promotes hemin-induced hemoglobinization in K562 cell. Site-directed mutagenesis experiments confirm the non-canonical poly(A) polymerase activity of FAM46A is essential for enhanced hemin-induced hemoglobinization. In summary, FAM46A is a novel poly(A) polymerase that functions as a critical intracellular modulator of hemoglobinization.

6.
Front Oncol ; 8: 304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30135857

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest GPCR subfamily. GPR56/ADGRG1 is a member of the ADGRG subgroup of aGPCRs. Although GPR56 is best known for its pivotal role in the cerebral cortical development, it is also important for tumor progression. Numerous studies have revealed that GPR56 is expressed in various cancer types with a role in cancer cell adhesion, migration and metastasis. In a recent study, we found that the immobilized GPR56-specific CG4 antibody enhanced IL-6 production and migration ability of melanoma cells. In this review, we will summarize the current understanding of GPR56 function and discuss the activation and signaling mechanisms of GPR56 in melanoma cells.

8.
Sci Rep ; 7: 46130, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397879

RESUMEN

The aim of the present study was to evaluate the microbiota of children with severe or complicated acute viral gastroenteritis (AGE). To that end, next-generation sequencing (NGS) technology was used to sequence the 16S ribosomal RNA (16S rRNA) gene in 20 hospitalized pediatric patients with severe or complicated AGE and a further 20 otherwise healthy children; the fecal microbiome was then assessed. Comparative metagenomics data were analyzed by a Wilcoxon rank-sum test and hierarchical clustering analysis of bacterial reads. The statistical analyses showed a significantly decreased Shannon diversity index (entropy score) of the intestinal microbiota in patients with severe AGE compared with normal controls (P = 0.017) and patients with mild-to-moderate AGE (P = 0.011). The intestinal microbiota score of the 5 patients with rotavirus AGE was significantly lower than that of those with norovirus infection (P = 0.048). Greater richness in Campylobacteraceae (P = 0.0003), Neisseriaceae (P = 0.0115), Methylobacteriaceae (P = 0.0004), Sphingomonadaceae (P = 0.0221), and Enterobacteriaceae (P = 0.0451) was found in patients with complicated AGE compared with normal controls. The data suggest a significant reduction in intestinal microbial diversity in patients with severe AGE, particularly those with rotavirus infection.


Asunto(s)
Gastroenteritis/microbiología , Gastroenteritis/virología , Microbioma Gastrointestinal , Índice de Severidad de la Enfermedad , Enfermedad Aguda , Biodiversidad , Infecciones por Caliciviridae/microbiología , Estudios de Casos y Controles , Niño , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética , Infecciones por Rotavirus/microbiología , Análisis de Secuencia de ARN
9.
Sci Rep ; 6: 37642, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886215

RESUMEN

Salmonella enterica serovars Choleraesuis and Typhimurium are among the non-typhoid Salmonella serovars that are important zoonotic pathogens. In clinical observation, S. Typhimurium typically causes diarrheal diseases; however, S. Choleraesuis shows high predilection to cause bacteremia. The mechanism why S. Choleraesuis is more invasive to humans remains unknown. In this study, we compared the S. Typhimurium LT2 and S. Choleraesuis SC-B67 proteomes through stable isotope labeling of amino acid in cell culture (SILAC). In SILAC, the expression of many virulence proteins in two type III secretion systems (T3SSs) were significantly higher in S. Choleraesuis than in S. Typhimurium. Similar differences were also found at the transcriptional level. Compared to S. Typhimurium, S. Choleraesuis showed a higher penetration level to Caco-2 (>100-fold) and MDCK (>10-fold) monolayers. In mice after oral challenge, the invasion of spleen and liver was also higher in S. Choleraesuis than in S. Typhimurium. The transcription of hilD in S. Choleraesuis was increased in physiological (1 mM) or high (10 mM) concentrations of Mg2+, but not in low (8 µM) concentration. We conclude that S. Choleraesuis showed hyperinvasiveness in cellular as well as mouse models due to hyperexpression of T3SS genes.


Asunto(s)
Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Ácidos/farmacología , Animales , Proteínas Bacterianas/metabolismo , Perros , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Prueba de Complementación Genética , Células HeLa , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Células de Riñón Canino Madin Darby , Magnesio/farmacología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Factores de Virulencia/metabolismo
10.
J Microbiol ; 52(1): 71-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24390840

RESUMEN

The genus Salmonella contains more than 2500 serovars. While most cause the self-limiting gastroenteritis, a few serovars can elicit typhoid fever, a severe systemic infection. S. enterica subsp. enterica serovar Typhimurium and S. Typhi are the representatives of the gastroenteritis and typhoid fever types of Salmonella. In this study, we adopted Stable Isotope Labeling with Amino acids in Cell culture (SILAC) technology to quantitatively compare the proteomes of the two serovars. We found several proteins with serovar-specific expression, which could be developed as new biomarkers for clinical serotype diagnosis. We found that flagella and chemotaxis genes were down-regulated in S. Typhi in comparison with S. Typhimurium. We attributed this observation to the fact that the smooth cellular structure of S. Typhi may better fit its systemic lifestyle. Instead of known virulence factors that were located within Salmonella Pathogenecity Islands, a number of core genes, which were involved in metabolism and transport of carbohydrates and amino acids, showed differential expression between the two serovars. Further studies on the roles of these differentially-expressed genes in the pathogenesis should be undertaken.


Asunto(s)
Proteínas Bacterianas/análisis , Proteoma/análisis , Salmonella typhi/química , Salmonella typhimurium/química , Marcaje Isotópico
11.
J Nanosci Nanotechnol ; 11(4): 3454-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21776723

RESUMEN

A facile route has been developed to enhance compatibility between organic polyimide matrix and dispersed phase of inorganic silica particles without addition of conventional silane-coupling agent. The as-prepared hybrid sol-gel materials having reduced size of SiO2 particle dispersed in polyimide matrix were successfully synthesized through pre-catalyzed sol-gel route using an organic diamine base. The PI-silica hybrid materials through conventional polyamic acid-catalyzed sol-gel route with/without silane-coupling agent were also prepared for comparative control studies. Morphological feature of as-prepared sol-gel materials prepared from three different approaches was also compared based on the studies of transmission electron microscopy. Effects of the material composition, in three different catalyzed routes, were investigated by thermal stability, mechanical strength, optical clarity, gas barrier and water absorption measurements of polyimide and a series of polyimide-silica hybrid sol-gel materials, respectively.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/ultraestructura , Resinas Sintéticas/química , Silanos/química , Geles/química , Ensayo de Materiales , Transición de Fase , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...