Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 48(32): 12239-12249, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31339119

RESUMEN

A family of di-nuclear bis(benzotriazole iminophenolate) (BiIBTP) cobalt complexes containing diverse ancillary carboxylate derivatives have been synthesized and structurally characterized. The one-pot synthesis of the BiIBTP ligand precursor with cobalt perchlorate salt (2.0 equiv.) and carboxylic acid derivatives (2.0 or 5.0 equiv.) in the presence of triethylamine (5.0 equiv.) under refluxing methanolic solution generated bimetallic di-carboxylate Co(ii)/Co(ii) complexes [(C83CBiIBTP)Co2(O2CR)2] (R = C6H5 (1), C6F5 (2), 4-CF3-C6H4 (3), 4-OMe-C6H4 (4), CF3 (5)) in ≧65% yields. Interestingly, the Co(ii)/Co(iii) mixed-valence complex 6 resulted from the treatment of 1 with silver perchlorate (1.0 equiv.) as the oxidizing agent under an O2-atmosphere in 50% yield. The crystal structure of 6 reveals an ionic and di-nuclear benzoate species composed of a cationic moiety formulated as [(C83CBiIBTP)Co2(O2CC6H5)2]+ and a counterbalanced perchlorate anion, and both metal atoms are attributed to hexa-coordinated cobalt ions with varied coordination environments. Catalysis results of CO2/epoxide copolymerization indicated that complex 1 was more efficient than 2-6 where compound 6 was shown to be the least active. Co complex 1 incorporating benzoate coligands was demonstrated to effectively catalyze the CO2-copolymerization of cyclohexene oxide (CHO), 4-vinyl-1,2-cyclohexene oxide or cyclopentene oxide, producing the associated CO2-based polycarbonates with >99% carbonate repeated units under optimal conditions. Not only the controllable character of complex 1 for CO2/CHO copolymerization is enabled, but also 1 has been shown to catalyze such a copolymerization in the "immortal" manner. Using the same di-cobalt catalyst in combination with excess ratios of neopentyl glycol (up to 150 equiv.) as the chain transfer agent could give low molecular weight poly(cyclohexene carbonate) polyols with monomodal molecular weight distributions. This work offers the facilely prepared di-nuclear cobalt complexes as catalysts for the efficient catalysis of CO2-copolymerization.

2.
Alcohol Clin Exp Res ; 42(12): 2298-2312, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30192394

RESUMEN

BACKGROUND: The first stage of alcoholic liver disease is hepatic steatosis. While alcohol is known to profoundly impact hepatic lipid metabolism, gaps in our knowledge remain regarding the mechanisms leading to alcohol-induced hepatic triglyceride (TG) accumulation. As the sole enzymes catalyzing the final step in TG synthesis, diacylglycerol O-acyltransferase (DGAT) 1 and 2 are potentially important contributors to alcoholic steatosis. Our goal was to study the effects of dietary fat content on alcohol-induced hepatic TG accumulation, and the relative contribution of DGAT1 and DGAT2 to alcoholic steatosis. METHODS: These studies were carried out in wild-type (WT) mice fed alcohol-containing high-fat or low-fat formulations of Lieber-DeCarli liquid diets, as well as follow-up studies in Dgat1-/- mice. RESULTS: A direct comparison of the low-fat and high-fat liquid diet in WT mice revealed surprisingly similar levels of alcoholic steatosis, although there were underlying differences in the pattern of hepatic lipid accumulation and expression of genes involved in hepatic lipid metabolism. Follow-up studies in Dgat1-/- mice revealed that these animals are protected from alcoholic steatosis when consumed as part of a high-fat diet, but not a low-fat diet. CONCLUSIONS: Dietary macronutrient composition influences the relative contribution of DGAT1 and DGAT2 to alcoholic steatosis, such that in the context of alcohol and a high-fat diet, DGAT1 predominates.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Dieta , Hígado Graso Alcohólico/genética , Nutrientes , Animales , Dieta con Restricción de Grasas , Grasas de la Dieta , Hígado Graso Alcohólico/patología , Regulación Enzimológica de la Expresión Génica , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/metabolismo
3.
Inorg Chem ; 56(11): 6141-6151, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28510429

RESUMEN

A series of structurally well-defined dinickel carboxylate complexes based on the RBiIBTP derivatives [RBiIBTP = bis(benzotriazole iminophenolate), where R = 3C for the propyl-bridged backbone and 5C for the 2,2-dimethyl-1,3-propyl-bridged backbone] were synthesized and developed for copolymerization of CO2 and epoxides. The one-pot reactions of nickel perchlorate with the RBiIBTP-H2 proligands and an appropriate amount of carboxylic acid derivatives (CF3COOH or 4-X-C6H4CO2H; X = H, CF3, OMe) upon the addition of triethylamine in refluxing methanol (MeOH) afforded dinuclear nickel dicarboxylate complexes, which could be formulated as either [(RBiIBTP)Ni2(O2CCF3)2] (1 and 2) or [(RBiIBTP)Ni2(O2CC6H4-4-X)2] (3-7). The dinickel monobenzoate complexes [(RBiIBTP)Ni2(O2CPh)(ClO4)(H2O)] [R = 3C (8) and 5C (9)] were prepared by using a similar synthetic route in tetrahydrofuran under reflux with a ligand precursor to metal salt to benzoic acid ratio of 1:2:1 in the presence of NEt3. Recrystallization of neutral nickel perchlorate complex 8 in a saturated MeOH or ethanol (EtOH) solution gave ionic and alcohol-solvated monobenzoate bimetallic analogues [(3CBiIBTP)Ni2(O2CPh)(S)2]ClO4, where S = MeOH (10) and EtOH (11). Single-crystal X-ray crystallography of dinickel analogues 1-11 indicates that the BiIBTP scaffold performs as a N,O,N,N,O,N-hexadentate ligand to chelate two Ni atoms, and the ancillary carboxylate group adopts a bridging bidentate bonding mode. Catalysis for copolymerization of carbon dioxide (CO2) with cyclohexene oxide (CHO) by complexes 1-9 was systematically investigated, and the influence of carboxylate ligands on the catalytic behavior was also studied. Trifluoroacetate-ligated dinickel complex 1 efficiently catalyzed CO2 and CHO with a high turnover frequency (>430 h-1) in a controlled fashion, generating perfectly alternating poly(cyclohexenecarbonate) with large molecular weight (Mn > 50000 g/mol). In addition to CO2/CHO copolymerization, bimetallic complex 1 was found to effectively copolymerize CO2 with 4-vinyl-1,2-cyclohexene oxide (VCHO) or cyclopentene oxide, producing the high carbonate contents of poly(VCHC-co-VCHO)s and highly alternating poly(cyclopentene carbonate)s, respectively. This study also enabled us to compare the catalytic efficiency of using cyclic epoxides with different ring strains or functional groups as comonomers by the dinickel catalyst 1.

4.
Autophagy ; 13(7): 1130-1144, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28548876

RESUMEN

Excess triglyceride (TG) accumulation in the liver underlies fatty liver disease, a highly prevalent ailment. TG occurs in the liver sequestered in lipid droplets, the major lipid storage organelle. Lipid droplets are home to the lipid droplet proteins, the most abundant of which are the perilipins (PLINs), encoded by 5 different genes, Plin1 to Plin5. Of the corresponding gene products, PLIN2 is the only constitutive and ubiquitously expressed lipid droplet protein that has been used as a protein marker for lipid droplets. We and others reported that plin2-/- mice have an ∼60% reduction in TG content, and are protected against fatty liver disease. Here we show that PLIN2 overexpression protects lipid droplets against macroautophagy/autophagy, whereas PLIN2 deficiency enhances autophagy and depletes hepatic TG. The enhanced autophagy in plin2-/- mice protects against severe ER stress-induced hepatosteatosis and hepatocyte apoptosis. In contrast, hepatic TG depletion resulting from other genetic and pharmacological manipulations has no effect on autophagy. Importantly, PLIN2 deficiency lowers cellular TG content in wild-type mouse embryonic fibroblasts (MEFs) via enhanced autophagy, but does not affect cellular TG content in atg7-/- MEFs that are devoid of autophagic function. Conversely, adenovirus-shAtg7-mediated hepatic Atg7 knockdown per se does not alter the hepatic TG level, suggesting a more complex regulation in vivo. In sum, PLIN2 guards its own house, the lipid droplet. PLIN2 overexpression protects against autophagy, and its downregulation stimulates TG catabolism via autophagy.


Asunto(s)
Autofagia , Hígado/metabolismo , Perilipina-2/fisiología , Animales , Proteína 7 Relacionada con la Autofagia/fisiología , Proteínas Portadoras/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico , Hepatocitos/química , Hepatocitos/ultraestructura , Ratones , Ratones Noqueados , Mitofagia , Perilipina-2/genética , Perilipina-2/metabolismo , Esterol Esterasa/metabolismo , Triglicéridos/metabolismo
5.
Front Physiol ; 7: 545, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27909409

RESUMEN

3,5,3'-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2), when administered to a model of familial hypercholesterolemia, i.e., low density lipoprotein receptor (LDLr)-knockout (Ldlr-/-) mice fed with a Western type diet (WTD), dramatically reduce circulating total and very low-density lipoprotein/LDL cholesterol with decreased liver apolipoprotein B (ApoB) production. The aim of the study was to highlight putative molecular mechanisms to manage cholesterol levels in the absence of LDLr. A comprehensive comparative profiling of changes in expression of soluble proteins in livers from Ldlr-/- mice treated with either T3 or T2 was performed. From a total proteome of 450 liver proteins, 25 identified proteins were affected by both T2 and T3, 18 only by T3 and 9 only by T2. Using in silico analyses, an overlap was observed with 11/14 pathways common to both iodothyronines, with T2 and T3 preferentially altering sub-networks centered around hepatocyte nuclear factor 4 α (HNF4α) and peroxisome proliferator-activated receptor α (PPARα), respectively. Both T2 and T3 administration significantly reduced nuclear HNF4α protein content, while T2, but not T3, decreased the expression levels of the HNFα transcriptional coactivator PGC-1α. Lower PPARα levels were found only following T3 treatment while both T3 and T2 lowered liver X receptor α (LXRα) nuclear content. Overall, this study, although it was not meant to investigate the use of T2 and T3 as a therapeutic agent, provides novel insights into the regulation of hepatic metabolic pathways involved in T3- and T2-driven cholesterol reduction in Ldlr-/- mice.

6.
FASEB J ; 29(9): 3654-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25985802

RESUMEN

The alcohol-induced depletion of hepatic retinoid stores correlates with the progression of liver injury; however, the mechanisms underlying alcohol's effects have not been fully elucidated. Our goal was to gain a mechanistic understanding of alcohol-induced hepatic retinoid depletion. Wild-type and mutant mice were continuously fed alcohol through Lieber-DeCarli liquid diets, with matched control animals pair fed an isocaloric alcohol-free diet to ensure equal nutrient and calorie intake between groups. A systematic analysis of tissue retinol and retinyl ester levels was performed with HPLC, complemented by gene and protein expression analyses. Our results delineated 2 phases of alcohol-induced depletion of hepatic retinoid. Initially, ∼15% of hepatic retinoid content was mobilized from the liver, causing extrahepatic tissue retinoid levels to increase. Subsequently, there was a precipitous drop in hepatic retinoid content (>60%), without further retinoid accumulation in the periphery. Follow-up studies in mutant mice revealed roles for RBP, CRBP1, and CD36 in retinoid mobilization and extrahepatic retinoid uptake, as well as a role for CYP2E1 in the catabolism of hepatic retinoid. In summary, alcohol has a biphasic effect on hepatic retinoid stores, characterized by an initial phase of rapid mobilization to extrahepatic tissues followed by extensive catabolism within the liver.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Hígado/metabolismo , Retinoides/metabolismo , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/patología , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Enfermedad Crónica , Hígado/patología , Ratones , Ratones Noqueados , Retinoides/genética , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo
7.
Biochim Biophys Acta ; 1841(12): 1648-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25251292

RESUMEN

We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ; ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/toxicidad , Modelos Biológicos , Miocitos Cardíacos/patología , Triglicéridos/toxicidad , Acetato CoA Ligasa/metabolismo , Adulto , Biomarcadores/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Lipasa/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Palmitatos/toxicidad
8.
J Biol Chem ; 289(43): 29881-91, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25157099

RESUMEN

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor α and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase Cα (PKCα), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.


Asunto(s)
Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/enzimología , Lípidos/sangre , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Envejecimiento/patología , Animales , Glucemia/metabolismo , Colesterol/sangre , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Exenatida , Ácidos Grasos/sangre , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/genética , Humanos , Intestinos/efectos de los fármacos , Intestinos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Especificidad de Órganos , Péptidos/farmacología , Fenotipo , Proteína Quinasa C/metabolismo , Triglicéridos/sangre , Ponzoñas/farmacología
9.
J Lipid Res ; 55(7): 1448-64, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24814977

RESUMEN

Nonalcoholic fatty liver disease is a major public health concern in the obese and type 2 diabetic populations. The high-fat lard diet induces obesity and fatty liver in C57BL/6J mice and suppresses expression of the PPAR-target gene, FA elongase 5 (Elovl5). Elovl5 plays a key role in MUFA and PUFA synthesis. Increasing hepatic Elovl5 activity in obese mice lowered hepatic TGs and endoplasmic reticulum stress markers (X-box binding protein 1 and cAMP-dependent transcription factor 6α) and increased TG catabolism and fatty acyl carnitines. Increased hepatic Elovl5 activity did not increase hepatic capacity for ß-oxidation. Elovl5 effects on hepatic TG catabolism were linked to increased protein levels of adipocyte TG lipase (ATGL) and comparative gene identification 58 (CGI58). Elevated hepatic Elovl5 activity also induced the expression of some (pyruvate dehydrogenase kinase 4 and fibroblast growth factor 21), but not other cytochrome P450 4A10 (CYP4A10), PPAR-target genes. FA products of Elovl5 activity increased ATGL, but not CGI58, mRNA through PPARß-dependent mechanisms in human HepG2 cells. Treatment of mouse AML12 hepatocytes with the PPARß agonist (GW0742) decreased (14)C-18:2,n-6 in TGs but did not affect ß-oxidation. These studies establish that Elovl5 activity regulates hepatic levels of FAs controlling PPARß activity, ATGL expression, and TG catabolism, but not FA oxidation.


Asunto(s)
Acetiltransferasas/metabolismo , Estrés del Retículo Endoplásmico , Hepatocitos/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Triglicéridos/metabolismo , Acetiltransferasas/genética , Animales , Elongasas de Ácidos Grasos , Células Hep G2 , Hepatocitos/patología , Humanos , Lipasa/genética , Lipasa/metabolismo , Hígado/patología , Masculino , Ratones , Obesidad/genética , Obesidad/patología , PPAR-beta/antagonistas & inhibidores , PPAR-beta/genética , PPAR-beta/metabolismo , Tiazoles/farmacología , Triglicéridos/genética
10.
J Lipid Res ; 55(2): 239-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24280415

RESUMEN

CD36 is a scavenger receptor with multiple ligands and cellular functions, including facilitating cellular uptake of free fatty acids (FFAs). Chronic alcohol consumption increases hepatic CD36 expression, leading to the hypothesis that this promotes uptake of circulating FFAs, which then serve as a substrate for triglyceride (TG) synthesis and the development of alcoholic steatosis. We investigated this hypothesis in alcohol-fed wild-type and Cd36-deficient (Cd36(-/-)) mice using low-fat/high-carbohydrate Lieber-DeCarli liquid diets, positing that Cd36(-/-) mice would be resistant to alcoholic steatosis. Our data show that the livers of Cd36(-/-) mice are resistant to the lipogenic effect of consuming high-carbohydrate liquid diets. These mice also do not further develop alcoholic steatosis when chronically fed alcohol. Surprisingly, we did not detect an effect of alcohol or CD36 deficiency on hepatic FFA uptake; however, the lower baseline levels of hepatic TG in Cd36(-/-) mice fed a liquid diet were associated with decreased expression of genes in the de novo lipogenesis pathway and a lower rate of hepatic de novo lipogenesis. In conclusion, Cd36(-/-) mice are resistant to hepatic steatosis when fed a high-carbohydrate liquid diet, and they are also resistant to alcoholic steatosis. These studies highlight an important role for CD36 in hepatic lipid homeostasis that is not associated with hepatic fatty acid uptake.


Asunto(s)
Antígenos CD36/deficiencia , Carbohidratos de la Dieta/efectos adversos , Resistencia a la Enfermedad , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/metabolismo , Animales , Grasas de la Dieta/análisis , Resistencia a la Enfermedad/efectos de los fármacos , Glucosa/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
11.
Biochim Biophys Acta ; 1831(7): 1276-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24046868

RESUMEN

Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Vitamina A/análogos & derivados , Aciltransferasas/metabolismo , Tejido Adiposo Blanco/metabolismo , Consumo de Bebidas Alcohólicas/sangre , Animales , Diacilglicerol O-Acetiltransferasa/metabolismo , Diterpenos , Esterificación , Ésteres/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Hidrólisis , Hepatopatías Alcohólicas/sangre , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/metabolismo , Ésteres de Retinilo , Vitamina A/sangre , Vitamina A/metabolismo
12.
Cell Metab ; 17(5): 695-708, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23663738

RESUMEN

Diabetes is a major risk factor for atherosclerosis. Although atherosclerosis is initiated by deposition of cholesterol-rich lipoproteins in the artery wall, the entry of inflammatory leukocytes into lesions fuels disease progression and impairs resolution. We show that diabetic mice have increased numbers of circulating neutrophils and Ly6-C(hi) monocytes, reflecting hyperglycemia-induced proliferation and expansion of bone marrow myeloid progenitors and release of monocytes into the circulation. Increased neutrophil production of S100A8/S100A9, and its subsequent interaction with the receptor for advanced glycation end products on common myeloid progenitor cells, leads to enhanced myelopoiesis. Treatment of hyperglycemia reduces monocytosis, entry of monocytes into atherosclerotic lesions, and promotes regression. In patients with type 1 diabetes, plasma S100A8/S100A9 levels correlate with leukocyte counts and coronary artery disease. Thus, hyperglycemia drives myelopoiesis and promotes atherogenesis in diabetes.


Asunto(s)
Aterosclerosis/patología , Hiperglucemia/patología , Mielopoyesis/fisiología , Animales , Aterosclerosis/metabolismo , Médula Ósea/metabolismo , Médula Ósea/patología , Enfermedad Coronaria/metabolismo , Enfermedad Coronaria/patología , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hiperglucemia/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Leucocitosis/metabolismo , Leucocitosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/patología , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patología , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo
13.
J Cardiovasc Pharmacol ; 61(4): 345-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23567901

RESUMEN

Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator-activated receptor (PPAR) γ via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPARγ mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPARγ, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPARγ mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.


Asunto(s)
Coenzima A Ligasas/genética , Aceites de Pescado/farmacología , Cadenas Pesadas de Miosina/genética , PPAR gamma/genética , Animales , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/patología , Femenino , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Proteína Quinasa C/metabolismo , Proteína Quinasa C beta , Proteína Quinasa C-alfa/metabolismo , Tasa de Supervivencia
14.
Endocrinology ; 153(11): 5143-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22948212

RESUMEN

Although studies in vitro and in hypothyroid animals show that thyroid hormone can, under some circumstances, modulate the actions of low-density lipoprotein (LDL) receptors, the mechanisms responsible for thyroid hormone's lipid-lowering effects are not completely understood. We tested whether LDL receptor (LDLR) expression was required for cholesterol reduction by treating control and LDLR-knockout mice with two forms of thyroid hormone T(3) and 3,5-diiodo-l-thyronine. High doses of both 3,5-diiodo-l-thyronine and T(3) dramatically reduced circulating total and very low-density lipoprotein/LDL cholesterol (∼70%) and were associated with reduced plasma T(4) level. The cholesterol reduction was especially evident in the LDLR-knockout mice. Circulating levels of both apolipoprotein B (apo)B48 and apoB100 were decreased. Surprisingly, this reduction was not associated with increased protein or mRNA expression of the hepatic lipoprotein receptors LDLR-related protein 1 or scavenger receptor-B1. Liver production of apoB was markedly reduced, whereas triglyceride production was increased. Thus, thyroid hormones reduce apoB lipoproteins via a non-LDLR pathway that leads to decreased liver apoB production. This suggests that drugs that operate in a similar manner could be a new therapy for patients with genetic defects in the LDLR.


Asunto(s)
Colesterol/sangre , Diyodotironinas/farmacología , Hígado/metabolismo , Receptores de LDL/metabolismo , Triyodotironina/farmacología , Animales , Apolipoproteínas B/sangre , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Receptores de LDL/genética , Receptores Depuradores de Clase B/metabolismo , Tiroxina/sangre
15.
J Lipid Res ; 53(11): 2364-79, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22911105

RESUMEN

Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1(-/-)) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affect the efficiency of retinol esterification, but it did reduce TG and retinoid accumulation in the small intestine. In contrast, inhibition of microsomal triglyceride transfer protein (MTP) reduced chylomicron secretion after oral fat/retinol loads, but with accumulation of dietary TG and retinoids in the small intestine. Lack of intestinal accumulation of TG and retinoids in DGAT1i-treated or intestine-Dgat1(-/-) mice resulted, in part, from delayed gastric emptying associated with increased plasma levels of glucagon-like peptide (GLP)-1. However, neither bypassing the stomach through duodenal oil injection nor inhibiting the receptor for GLP-1 normalized postprandial TG or retinyl esters excursions in the absence of DGAT1 activity. In summary, intestinal DGAT1 inhibition or deficiency acutely delayed gastric emptying and inhibited chylomicron secretion; however, the latter occurred when gastric emptying was normal or when lipid was administered directly into the small intestine. Long-term hepatic retinoid metabolism was not impacted by DGAT1 inhibition.


Asunto(s)
Quilomicrones/metabolismo , Diacilglicerol O-Acetiltransferasa/deficiencia , Diacilglicerol O-Acetiltransferasa/metabolismo , Vaciamiento Gástrico/genética , Periodo Posprandial/fisiología , Triglicéridos/metabolismo , Animales , Carbamatos/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/genética , Vaciamiento Gástrico/efectos de los fármacos , Péptido 1 Similar al Glucagón/sangre , Receptor del Péptido 1 Similar al Glucagón , Indoles/farmacología , Masculino , Ratones , Ratones Mutantes , Fragmentos de Péptidos/farmacología , Periodo Posprandial/genética , Receptores de Glucagón/antagonistas & inhibidores , Retinoides/metabolismo , Triglicéridos/sangre
16.
Biochim Biophys Acta ; 1831(7): 1276-86, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23583843

RESUMEN

Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption. A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease.

17.
J Lipid Res ; 52(11): 2021-31, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21856784

RESUMEN

Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.


Asunto(s)
Alcoholes/efectos adversos , Alimentación Animal/efectos adversos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Ceramidas/metabolismo , Endocannabinoides , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Alcamidas Poliinsaturadas/metabolismo , Esfingolípidos/metabolismo
18.
Diabetes ; 60(6): 1759-69, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21562077

RESUMEN

OBJECTIVE: Patients with diabetes have increased cardiovascular risk. Atherosclerosis in these patients is often associated with increased plaque macrophages and dyslipidemia. We hypothesized that diabetic atherosclerosis involves processes that impair favorable effects of lipid reduction on plaque macrophages. RESEARCH DESIGN AND METHODS: Reversa mice are LDL receptor-deficient mice that develop atherosclerosis. Their elevated plasma LDL levels are lowered after conditional knockout of the gene encoding microsomal triglyceride transfer protein. We examined the morphologic and molecular changes in atherosclerotic plaques in control and streptozotocin-induced diabetic Reversa mice after LDL lowering. Bone marrow-derived macrophages were also used to study changes mediated by hyperglycemia. RESULTS: Reversa mice were fed a western diet for 16 weeks to develop plaques (baseline). Four weeks after lipid normalization, control (nondiabetic) mice had reduced plasma cholesterol (-77%), plaque cholesterol (-53%), and plaque cells positive for macrophage marker CD68+ (-73%), but increased plaque collagen (+116%) compared with baseline mice. Diabetic mice had similarly reduced plasma cholesterol, but collagen content increased by only 34% compared with baseline; compared with control mice, there were lower reductions in plaque cholesterol (-30%) and CD68+ cells (-41%). Diabetic (vs. control) plaque CD68+ cells also exhibited more oxidant stress and inflammatory gene expression and less polarization toward the anti-inflammatory M2 macrophage state. Many of the findings in vivo were recapitulated by hyperglycemia in mouse bone marrow-derived macrophages. CONCLUSIONS: Diabetes hindered plaque regression in atherosclerotic mice (based on CD68+ plaque content) and favorable changes in plaque macrophage characteristics after the reduction of elevated plasma LDL.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Macrófagos/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células Cultivadas , Colesterol/sangre , Colesterol/metabolismo , Colágeno/sangre , Colágeno/metabolismo , Dieta Aterogénica , Ratones , Ratones Noqueados , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Placa Aterosclerótica , Reacción en Cadena de la Polimerasa , Receptores de LDL/deficiencia , Receptores de LDL/genética
19.
J Lipid Res ; 52(4): 732-44, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205704

RESUMEN

Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice. Hearts of chow-diet Dgat1(-/-) mice were larger than those of wild-type (WT) mice, but cardiac function was normal. Skeletal muscles from Dgat1(-/-) mice were also larger. Muscle hypertrophy factors phospho-AKT and phospho-mTOR were increased in Dgat1(-/-) cardiac and skeletal muscle. In contrast to muscle, liver from Dgat1(-/-) mice had no reduction in mRNA levels of genes mediating fatty acid oxidation. Glucose uptake was increased in cardiac and skeletal muscle in Dgat1(-/-) mice. Treatment with an inhibitor specific for DGAT1 led to similarly striking reductions in mRNA levels of genes mediating fatty acid oxidation in cardiac and skeletal muscle. These changes were reproduced in cultured myocytes with the DGAT1 inhibitor, which also blocked the increase in mRNA levels of Ppar genes and their targets induced by palmitic acid. Thus, loss of DGAT1 activity in muscles decreases mRNA levels of genes involved in lipid uptake and oxidation.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Absorciometría de Fotón , Animales , Western Blotting , Línea Celular , Ceramidas/metabolismo , Diacilglicerol O-Acetiltransferasa/deficiencia , Diacilglicerol O-Acetiltransferasa/genética , Diglicéridos/metabolismo , Ecocardiografía , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Glucosa/metabolismo , Lipoproteínas VLDL/metabolismo , Masculino , Ratones , Ratones Noqueados , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos/genética , Ácido Palmítico/farmacología , Reacción en Cadena de la Polimerasa
20.
Diabetes ; 57(6): 1674-82, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18346984

RESUMEN

OBJECTIVE: Patients with diabetes often have dyslipidemia and increased postprandial lipidmia. Induction of diabetes in LDL receptor (Ldlr(-/-)) knockout mice also leads to marked dyslipidemia. The reasons for this are unclear. RESEARCH DESIGN AND METHODS: We placed Ldlr(-/-) and heterozygous LDL receptor knockout (Ldlr(+/-)) mice on a high-cholesterol (0.15%) diet, induced diabetes with streptozotocin (STZ), and assessed reasons for differences in plasma cholesterol. RESULTS: STZ-induced diabetic Ldlr(-/-) mice had plasma cholesterol levels more than double those of nondiabetic controls. Fast-performance liquid chromatography and ultracentrifugation showed an increase in both VLDL and LDL. Plasma VLDL became more cholesterol enriched, and both VLDL and LDL had a greater content of apolipoprotein (apo)E. In LDL the ratio of apoB48 to apoB100 was increased. ApoB production, assessed using [(35)S]methionine labeling in Triton WR1339-treated mice, was not increased in fasting STZ-induced diabetic mice. Similarly, postprandial lipoprotein production was not increased. Reduction of cholesterol in the diet to normalize the amount of cholesterol intake by the control and STZ-induced diabetic animals reduced plasma cholesterol levels in STZ-induced diabetic mice, but plasma cholesterol was still markedly elevated compared with nondiabetic controls. LDL from STZ-induced diabetic mice was cleared from the plasma and trapped more rapidly by livers of control mice. STZ treatment reduced liver expression of the proteoglycan sulfation enzyme, heparan sulfate N-deacetylase/N-sulfotrasferase-1, an effect that was reproduced in cultured hepatocytyes by a high glucose-containing medium. CONCLUSIONS: STZ-induced diabetic, cholesterol-fed mice developed hyperlipidemia due to a non-LDL receptor defect in clearance of circulating apoB-containing lipoproteins.


Asunto(s)
Colesterol/sangre , Diabetes Mellitus Experimental/sangre , Lípidos/sangre , Lipoproteínas/sangre , Receptores de LDL/deficiencia , Triglicéridos/sangre , Animales , Apolipoproteínas B/sangre , Apolipoproteínas E/sangre , Glucemia/metabolismo , Colesterol en la Dieta , Cruzamientos Genéticos , Diabetes Mellitus Experimental/fisiopatología , Dislipidemias/genética , Hígado/fisiopatología , Neoplasias Hepáticas , Neoplasias Hepáticas Experimentales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...