Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 4(6): 1565-1576, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134378

RESUMEN

Aramid nanofibers (ANFs) have important applications in many fields, including electrical insulation and battery separators. However, a few limitations seriously restrict the application of ANFs currently, such as low preparation efficiency and the unclear preparation mechanism. To overcome these limitations, the present work proposes a new view-point from the perspective of reaction kinetics. The preparation efficiency was proven to essentially rely on the effective c(OH-). With a simple pre-treatment, a kinetic advantage was created and the preparation time of ANFs was reduced from multiple hours to 10 minutes, which was a considerable step towards practical applications. Moreover, the resultant ANF membranes still exhibited excellent properties in terms of mechanical strength (tensile strength > 160 MPa), thermal stability, light transmittance, and electrical insulation (above 90 kV mm-1). This work not only presents an ultrafast method to produce ANFs but also provides new insights into the mechanism that will benefit the subsequent development of ANF-based materials.

2.
RSC Adv ; 8(50): 28433-28439, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35542487

RESUMEN

The present study investigates a new solvent system for the dissolution of chitosan and a new method for preparing chitosan membranes. First, aqueous tartaric acid was used to pretreat chitosan. Then, the chitosan was precipitated with ethanol or other regenerating agents, and 1.5 mL of 1-ethyl-3-methylimidazolium acetate ([EMIM]AC) was added to obtain translucent suspensions. The chitosan membranes were prepared by casting the suspensions on glass plates and allowing solvent evaporation. The structure and properties of the films were investigated by SEM, FT-IR, XRD and TGA. Also, the mechanical properties, as well as physical and chemical characteristics, of the chitosan films were evaluated. The results indicated that the optimum dissolution time was 10 min and the most suitable drying temperature was 60 °C. The thus-prepared film was moderately thick (about 0.02 mm) and had a smooth surface, without curling. The chitosan film prepared by ethanol regeneration had a tensile strength of up to 24 MPa, a minimum swelling degree of 78%, and a water vapor transmission rate of 270 g m-2 d-1 without the addition of plasticizer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA