Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(8): 196, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183209

RESUMEN

The antagonistic Bacillus amyloliquefaciens HY2-1 was a marine microbiology that was isolated previously from the seabed silt of Beibu Gulf in China by dual culture with Penicillium digitatum. As a continuous study, the present work focused on evaluating the antimicrobial activity, identifying the produced active components, and revealing the fermentation characteristics of B. amyloliquefaciens HY2-1, respectively. It was found that B. amyloliquefaciens HY2-1 exhibited a broad-spectrum antimicrobial activity against the tested seven phytopathogenic fungi and five pathogenic bacteria by producing Bacillus lipopeptides such as fengycin A (C14 to C19 homologues) and surfactin (C14 and C15 homologues). Morphological observation of P. digitatum under light microscope, scanning electron microscopy, transmission electron microscopy, and fluorescence microscope inferred that B. amyloliquefaciens exerted the antagonistic activity by damaging the fungal cell membrane, thus inhibiting the mycelium growth and sporification of phytopathogenic fungi. As a marine microbiology, our results showed that B. amyloliquefaciens could survive and metabolize even at the culture condition with 110 g/L of NaCl concentration, and the produced antimicrobial compounds exhibited excellent thermostability and acid-alkali tolerance. The dynamic models were further constructed to theoretically analyze the fermentation process of B. amyloliquefaciens HY2-1, suggesting that the synthesis of antimicrobial compounds was coupled with both cell growth and cell biomass. In conclusion, the marine lipopeptides-producing B. amyloliquefaciens HY2-1 showed a promising prospect to be explored as a biocontrol agent for plant disease control of crops and postharvest preservation of fruits and vegetables, especially due to its outstanding stress resistance and the broad-spectrum and effective antagonist on various phytopathogenic fungi.


Asunto(s)
Antiinfecciosos , Bacillus amyloliquefaciens , Antifúngicos/farmacología , Antifúngicos/metabolismo , Bacillus amyloliquefaciens/metabolismo , Fermentación , Cinética , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Lipopéptidos/metabolismo
2.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241957

RESUMEN

As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.


Asunto(s)
Líquidos Corporales , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Cadmio/toxicidad , Ácidos Docosahexaenoicos/farmacología , Heces
3.
Biol Trace Elem Res ; 201(9): 4437-4446, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36454454

RESUMEN

As a toxic trace element commonly found in food, cadmium (Cd) can cause severe liver injury. Our previous study showed that threonine (Thr) could significantly alleviate Cd toxicity in yeast. To investigate the effect of Thr on Cd-induced liver injury in mice, twenty-four mice were randomly divided into four groups: control, Cd, and low/high dose of Thr-treatment groups (0.04 and 0.08 mmol/kg/day, respectively). After 7 days of continuous treatment, the alleviative effect of Thr on liver injury in Cd-exposed mice was assessed. The results showed that Thr significantly reduced the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in Cd-exposed mice. Histological analysis showed that Thr decreased Cd-induced hepatic steatosis, zonal necrosis, and inflammatory cell infiltration. Thr also reduced the Cd-induced malondialdehyde (MDA) and O2- levels and restored superoxide dismutase (SOD) and catalase (CAT) activities in the liver. Further investigation showed that Thr significantly suppressed Cd-induced inflammatory response (tumor necrosis factor-α and interleukin-6) and restored the level of anti-apoptotic protein (Blc-2) but inhibited the elevation of pro-apoptotic proteins (Bax and caspase-3), as well as the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, Thr alleviated Cd-induced liver injury through reducing Cd-induced oxidative stress, inflammation, and attenuating hepatocyte apoptosis via PI3K/AKT-related signaling pathway.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratones , Antioxidantes/metabolismo , Apoptosis , Cadmio/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Molecules ; 28(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615370

RESUMEN

Cadmium (Cd) can easily enter the body through the food chain and threaten health since Cd pollution is prevalent in the environment. Gut microbiota is necessary for the reduction of metal ions. To reduce Cd-induced harmful impacts and Cd accumulation in the body, we investigated the effect of amino acids on gut microbiota and Cd excretion in (fecal Cd) Cd-exposed mice. The screening of 20 amino acids showed that threonine (Thr) effectively increased fecal Cd, and reduced Cd-induced intestinal structural damage. The abundance of Escherichia-Shigella genus and KF843036_g significantly increased after the oral administration of Thr. As the type species of the Escherichia-Shigella genus, Escherichia coli exhibited high similarity to KF843036_g species and significantly decreased Cd-induced gut damage. Cd contents in the liver, kidney, and gut of Cd-exposed mice were also significantly (p < 0.05) decreased after E. coli treatment, while the contents in the feces were increased. The results demonstrated the potential roles that gut E. coli might play in Thr-mediated Cd excretion in Cd-exposed mice. The findings may provide important data for better understanding the molecular biological mechanism of Thr in reducing Cd accumulation in the body.


Asunto(s)
Cadmio , Microbioma Gastrointestinal , Ratones , Animales , Cadmio/metabolismo , Escherichia coli/metabolismo , Treonina , Heces
5.
J Basic Microbiol ; 61(4): 339-350, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33570201

RESUMEN

Environment and food contamination with cadmium (Cd) can cause serious toxicity, posing a severe threat to agricultural production and human health. However, how amino acids contribute to defenses against oxidative stress caused by Cd in cells is not fully understood. As a model eukaryote with a relatively clear genetic background, Saccharomyces cerevisiae has been commonly used in Cd toxicity research. To gain insight into Cd toxicity and cell defenses against it, 20 amino acids were screened for protective roles against Cd stress in S. cerevisiae. The results showed that threonine (Thr, T) had the strongest protective effect against Cd-induced mortality and membrane damage in the cells. Compared to the antioxidant vitamin C (VC), Thr exhibited a higher efficacy in restoring the superoxide dismutase (SOD) activity that was inhibited by Cd but not by H2 O2 in vivo. Thr exhibited evident DPPH (2,2-diphenyl-1-picrylhydrazyl) activity but weak ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-9 sulfonic acid)) scavenging activity, giving it a weaker effect against Cd-induced lipid peroxidation and superoxide radical O2- , compared to VC. More importantly, compared to the chelating agent EDTA, Thr showed stronger chelation of Cd, giving it a stronger protective effect on SOD against Cd than VC in vitro. The results of the in vivo and in vitro experiments revealed that the role Thr plays in cell defenses against Cd may be attributed to its protection of the SOD enzyme, predominantly through the preferential chelation of Cd. Our results provide insights into the protective mechanisms of amino acid Thr that ameliorate Cd toxicity and suggest that a supplement of Thr might help to reduce Cd-induced oxidative damage.


Asunto(s)
Cadmio/toxicidad , Saccharomyces cerevisiae/metabolismo , Treonina/farmacología , Antioxidantes/metabolismo , Benzotiazoles , Catalasa/metabolismo , Depuradores de Radicales Libres , Humanos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácidos Sulfónicos , Superóxido Dismutasa/metabolismo , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...