Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(28): 8723-8731, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968148

RESUMEN

Repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1 macrophages has been considered a promising strategy for enhanced cancer immunotherapy. However, several immunosuppressive ligands (e.g., LSECtin) can still be highly expressed on M1 macrophages, inducing unsatisfactory therapeutic outcomes. We herein developed an antibody-decorated nanoplatform composed of PEGylated iron oxide nanoparticles (IONPs) and LSECtin antibody conjugated onto the surface of IONPs via the hydrazone bond for enhanced cancer immunotherapy. After intravenous administration, the tumor microenvironment (TME) pH could trigger the hydrazone bond breakage and induce the disassociation of the nanoplatform into free LSECtin antibodies and IONPs. Consequently, the IONPs could repolarize TAMs into M1 macrophages to remodel immunosuppressive TME and provide an additional anticancer effect via secreting tumoricidal factors (e.g., interlukin-12). Meanwhile, the LSECtin antibody could further block the activity of LSECtin expressed on M1 macrophages and relieve its immunosuppressive effect on CD8+ T cells, ultimately leading to significant inhibition of tumor growth.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/efectos de los fármacos , Neoplasias/terapia , Neoplasias/inmunología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Línea Celular Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/uso terapéutico
2.
Small ; 20(10): e2305923, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919865

RESUMEN

Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Propionatos , Compuestos de Sulfhidrilo , Humanos , Femenino , Interferencia de ARN , Neoplasias de la Mama/patología , ARN Interferente Pequeño/genética , Nanopartículas/química , Péptidos/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial , Adenosina Trifosfato , Línea Celular Tumoral
3.
Adv Sci (Weinh) ; 10(19): e2207118, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203277

RESUMEN

Tyrosine kinase inhibitors represented by sorafenib are the first-line treatment for hepatocellular carcinoma (HCC), but the low response rate of HCC patient has become a clinical pain-point. Emerging evidences have revealed that metabolic reprogramming plays an important role in regulating the sensitivity of tumor cells to various chemotherapeutics including sorafenib. However, the underlying mechanisms are very complex and are not fully elucidated. By comparing the transcriptome sequencing data of sorafenib-sensitive and -insensitive HCC patients, it is revealed that cofilin 1 (CFL1) is highly expressed in the tumor tissues of sorafenib-insensitive HCC patients and closely correlated with their poor prognosis. Mechanically, CFL1 can promote phosphoglycerate dehydrogenase transcription and enhance serine synthesis and metabolism to accelerate the production of antioxidants for scavenging the excessive reactive oxygen species induced by sorafenib, thereby impairing the sorafenib sensitivity of HCC. To translate this finding and consider the severe side effects of sorafenib, a reduction-responsive nanoplatform for systemic co-delivery of CFL1 siRNA (siCFL1) and sorafenib is further developed, and its high efficacy in inhibiting HCC tumor growth without apparent toxicity is demonstrated. These results indicate that nanoparticles-mediated co-delivery of siCFL1 and sorafenib can be a new strategy for the treatment of advanced HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cofilina 1 , Línea Celular Tumoral
4.
Acta Biomater ; 162: 98-109, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931417

RESUMEN

Sorafenib is the first line drug for hepatocellular carcinoma (HCC) therapy. However, HCC patients usually acquire resistance to sorafenib treatment within 6 months. Recent evidences have shown that anticancer drugs with antiangiogenesis effect (e.g., sorafenib) can aggravate the hypoxia microenvironment and promote the infiltration of more tumor-associated macrophages (TAMs) into the tumor tissues. Therefore, repolarization of TAMs phenotype could be expected to not only eliminate the influence of TAMs on sorafenib lethality to HCC cells, but also provide an additional anticancer effect to achieve combination therapy. However, immune side effects remain a great challenge due to the non-specific macrophage repolarization in normal tissues. We herein employed a tumor microenvironment (TME) pH-responsive nanoplatform to concurrently transport sorafenib and modified resiquimod (R848-C16). This nanoparticle (NP) platform is made with a TME pH-responsive methoxyl-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) copolymer. After intravenous administration, the co-delivery NPs could highly accumulate in the tumor tissues and then respond to the TME pH to detach their surface PEG chains. With this PEG detachment to enhance uptake by TAMs and HCC cells, the co-delivery NPs could combinatorially inhibit HCC tumor growth via sorafenib-mediated lethality to HCC cells and R848-mediated repolarization of TAMs into tumoricidal M1-like macrophages. STATEMENT OF SIGNIFICANCE: Anticancer drugs with antiangiogenesis effect (e.g., sorafenib) can aggravate the hypoxia microenvironment and promote the infiltration of more tumor-associated macrophages (TAMs) into the tumor tissues to restrict the anticancer effect. In this work, we designed and developed a tumor microenvironment (TME) pH-responsive nanoplatform for systemic co-delivery of sorafenib and resiquimod in hepatocellular carcinoma (HCC) therapy. These co-delivery NPs show high tumor accumulation and could respond to the TME pH to enhance uptake by TAMs and HCC cells. With the sorafenib-mediated lethality to HCC cells and R848-mediated repolarization of TAMs, the co-delivery NPs show a combinational inhibition of HCC tumor growth in both xenograft and orthotopic tumor models.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Sorafenib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Inhibidores de la Angiogénesis/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Macrófagos/patología , Microambiente Tumoral , Nanopartículas/uso terapéutico
5.
Acta Pharm Sin B ; 13(3): 967-981, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970197

RESUMEN

Platinum-based chemotherapy resistance is a key factor of poor prognosis and recurrence in hepatocellular carcinoma (HCC). Herein, RNAseq analysis revealed that elevated tubulin folding cofactor E (TBCE) expression is associated with platinum-based chemotherapy resistance. High expression of TBCE contributes to worse prognoses and earlier recurrence among liver cancer patients. Mechanistically, TBCE silencing significantly affects cytoskeleton rearrangement, which in turn increases cisplatin-induced cycle arrest and apoptosis. To develop these findings into potential therapeutic drugs, endosomal pH-responsive nanoparticles (NPs) were developed to simultaneously encapsulate TBCE siRNA and cisplatin (DDP) to reverse this phenomena. NPs (siTBCE + DDP) concurrently silenced TBCE expression, increased cell sensitivity to platinum treatment, and subsequently resulted in superior anti-tumor effects both in vitro and in vivo in orthotopic and patient-derived xenograft (PDX) models. Taken together, NP-mediated delivery and the co-treatment of siTBCE + DDP proved to be effective in reversing chemotherapy resistance of DDP in multiple tumor models.

6.
Front Bioeng Biotechnol ; 8: 629452, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425884

RESUMEN

Bacteria are the most common pathogens to cause infection of surgical sites, which usually induce severe postoperative morbidity and more healthcare costs. Inhibition of bacteria adhesion and colonization is an effective strategy to prevent the spread of infection at the surgical sites. Hydrogels have been widely used as promising antibacterial materials, due to their unique porous structure that could accommodate various antibacterial agents (e.g., antibiotics and cationic polymers with inherent antibacterial activity). Herein, inspired by the natural protein self-assembly, an amphiphilic peptide comprised of a hydrophobic naphthyl (Nap) acetyl tail and a hydrophilic peptide backbone was employed to construct supramolecular hydrogel for sustained release of the antibiotic polymyxin B. At neutral pH, the negatively charged amphiphilic peptide could form electrostatic attraction interaction with the positively charged polymyxin B, which could thus drive the ionized peptide molecules to get close to each other and subsequently trigger the self-assembly of the amphiphilic peptide into supramolecular hydrogel via intermolecular hydrogen bonding interaction among the peptide backbones and π-stacking of the hydrophobic Nap tails. More importantly, the electrostatic attraction interaction between polymyxin B and the amphiphilic peptide could ensure the sustained release of polymyxin B from the supramolecular hydrogel, leading to an effective inhibition of Gram-negative bacteria Escherichia coli growth. Combining the good biocompatibility of the amphiphilic peptide, the supramolecular hydrogel developed in this work shows a great potential for the surgical site infection application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...