Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncol Lett ; 28(1): 306, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38774456

RESUMEN

Long non-coding (lnc)RNAs serve a pivotal role as regulatory factors in carcinogenesis. The present study aimed to assess the involvement of the lncRNA progression and angiogenesis-associated RNA in hepatocellular carcinoma (PAARH) in liver cancer, along with the associated underlying mechanism. Through the use of reverse transcription-quantitative (RT-q)PCR, differences in the expression levels of PAARH in HepG2, HEP3B2.1.7, HCCLM3, Huh-7 and MHCC97-H liver cancer cell lines and THLE-2 epithelial cell lines were evaluated. The liver cancer cell line with the greatest, significantly different, level of expression relative to the normal liver cell line was selected for subsequent experiments. Using ENCORI database, the putative target genes of the microRNA (miR) miR-6512-3p were predicted. Cells were then transfected with lentiviruses carrying short-hairpin-PAARH to interfere with PAARH expression. Subsequently, HepG2 liver cancer cells were transfected with a miR-6512-3p mimic and an inhibitor, and the expression levels of miR-6512-3p and the LIM and SH3 domain protein 1 (LASP1) in cells were assessed using RT-qPCR analysis. Cell proliferation was subsequently evaluated using colony formation assays, and immunofluorescence and western blotting were used to assess the expression level of LASP1 in transfected cells. The binding interaction between miR-6512-3p and LASP1 was further evaluated using a dual-luciferase reporter gene assay. Liver cancer cells were found to exhibit higher expression levels of PAARH compared with normal liver cells. Following PAARH interference, the expression level of miR-6512-3p was significantly increased, whereas that of LASP1 was significantly decreased, resulting in a reduction in cell proliferation. In liver cancer cells, miR-6512-3p overexpression led to a significant reduction in the LASP1 level and reduced proliferation, whereas suppressing miR-6512-3p led to a significant increase in LASP1 levels and increased proliferation. Additionally, the inhibition of miR-6512-3p caused the states of low LASP1 expression and reduced cell proliferation to be reversed. LASP1, a recently identified target gene of miR-6512-3p, was demonstrated to be suppressed by miR-6512-3p overexpression, thereby inhibiting liver cancer cell proliferation. Taken together, the findings of the present study demonstrate that the lncRNA PAARH may enhance liver cancer cell proliferation by engaging miR-6512-3p to target LASP1.

2.
J Hepatocell Carcinoma ; 11: 543-562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496248

RESUMEN

Objective: Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods: To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results: MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion: MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.

3.
Sci Rep ; 14(1): 6155, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486042

RESUMEN

As the most prevalent epitranscriptomic modification, N6-methyladenosine (m6A) shows important roles in a variety of diseases through regulating the processing, stability and translation of target RNAs. However, the potential contributions of m6A to RNA functions are unclear. Here, we identified a functional and prognosis-related m6A-modified RNA SREBF2-AS1 in hepatocellular carcinoma (HCC). The expression of SREBF2-AS1 and SREBF2 in HCC tissues and cells was measured by RT-qPCR. m6A modification level of SREBF2-AS1 was measured by methylated RNA immunoprecipitation assay. The roles of SREBF2-AS1 in HCC progression and sorafenib resistance were investigated by proliferation, apoptosis, migration, and cell viability assays. The regulatory mechanisms of SREBF2-AS1 on SREBF2 were investigated by Chromatin isolation by RNA purification, RNA immunoprecipitation, CUT&RUN, and bisulfite DNA sequencing assays. Our findings showed that the expression of SREBF2-AS1 was increased in HCC tissues and cells, and positively correlated with poor survival of HCC patients. m6A modification level of SREBF2-AS1 was also increased in HCC and positively correlated with poor prognosis of HCC patients. METTL3 and METTL14-induced m6A modification upregulated SREBF2-AS1 expression through increasing SREBF2-AS1 transcript stability. Functional assays showed that only m6A-modified, but not non-modified SREBF2-AS1 promoted HCC progression and sorafenib resistance. Mechanistic investigations revealed that m6A-modified SREBF2-AS1 bound and recruited m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 to SREBF2 promoter, leading to DNA demethylation at SREBF2 promoter and the upregulation of SREBF2 transcription. Functional rescue assays showed that SREBF2 was the critical mediator of the oncogenic roles of SREBF2-AS1 in HCC. Together, this study showed that m6A-modified SREBF2-AS1 exerted oncogenic roles in HCC through inducing DNA demethylation and transcriptional activation of SREBF2, and suggested m6A-modified SREBF2-AS1 as a prognostic biomarker and therapeutic target for HCC.


Asunto(s)
Adenosina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Desmetilación del ADN , Línea Celular Tumoral , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
4.
J Hepatocell Carcinoma ; 10: 1991-2007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954496

RESUMEN

Purpose: N6-methyladenosine (m6A) modification plays an important role in regulating RNA maturation, stability, and translation. Thus, m6A modification is involved in various pathophysiological processes including hepatocellular carcinoma (HCC). However, the direct contribution of m6A modifications to RNA function in HCC remains unclear. Here, we identified LEAWBIH (long non-coding RNA epigenetically activating Wnt/ß-catenin signalling in HCC) as an m6A-modified long non-coding RNA (lncRNA) and investigated the effects of m6A on the function of LEAWBIH in HCC. Methods: Quantitative polymerase chain reaction was performed to measure the gene expression in tissues and cells. The level of m6A modification was detected using a methylated RNA immunoprecipitation assay and single-base elongation- and ligation-based qPCR amplification method. Cell proliferation was evaluated using the Glo cell viability and CCK-8 assays. Cell migration and invasion were evaluated using Transwell migration and invasion assays. The mechanisms of m6A modified LEAWBIH were investigated using chromatin isolation by RNA purification, chromatin immunoprecipitation, and dual-luciferase reporter assays. Results: LEAWBIH was highly expressed and correlated with poor survival in HCC patients. LEAWBIH was identified as a m6A-modified transcript. m6A modification increased LEAWBIH transcript stability. The m6A modification level of LEAWBIH was increased in HCC, and a high m6A modification level of LEAWBIH predicted poor survival. LEAWBIH promotes HCC cell proliferation, migration, and invasion in an m6A modification-dependent manner. Mechanistic investigations revealed that m6A-modified LEAWBIH activated Wnt/ß-catenin signaling. m6A-modified LEAWBIH binds to the m6A reader YTHDC1, which further interacts with and recruits H3K9me2 demethylase KDM3B to CTNNB1 promoter, leading to H3K9me2 demethylation and CTNNB1 transcription activation. Functional rescue assays showed that blocking Wnt/ß-catenin signaling abolished the role of LEAWBIH in HCC. Conclusion: m6A-modified LEAWBIH exerts oncogenic effects in HCC by epigenetically activating Wnt/ß-catenin signaling, highlighting m6A-modified LEAWBIH as a promising therapeutic target for HCC.

5.
Sci Rep ; 13(1): 19124, 2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926706

RESUMEN

N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic RNAs. Although the important roles of m6A in RNA fate have been revealed, the potential contribution of m6A to RNA function in various diseases, including hepatocellular carcinoma (HCC), is still unclear. In this study, we identified a novel m6A-modified RNA AC026356.1. We found that AC026356.1 was increased in HCC tissues and cell lines. High expression of AC026356.1 was correlated with poor survival of HCC patients. m6A modification level of AC026356.1 was also increased in HCC and more significantly correlated with poor survival of HCC patients. Functional assays showed that m6A-modified AC026356.1 promoted HCC cellular proliferation, migration, and liver metastasis. Gene set enrichment analysis showed that AC026356.1 activated IL11/STAT3 signaling. Mechanistic investigation showed that m6A-modified AC026356.1 bound to IGF2BP1. The interaction between m6A-modified AC026356.1 and IGF2BP1 promoted the binding of IL11 mRNA to IGF2BP1, leading to increased IL11 mRNA stability and IL11 secretion. Functional rescue assays showed that depletion of IL11 reversed the oncogenic roles of AC026356.1. These findings revealed the potential influences of m6A modification on RNA biological functions and suggested that targeting m6A modification may be a novel strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Interleucina-11/metabolismo , Neoplasias Hepáticas/patología , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
J Hepatocell Carcinoma ; 10: 1479-1495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701563

RESUMEN

Purpose: N6-methyladenosine (m6A) modification has shown critical roles in regulating mRNA fate. Non-coding RNAs also have important roles in various diseases, including hepatocellular carcinoma (HCC). However, the potential influences of m6A modification on non-coding RNAs are still unclear. In this study, we identified a novel m6A-modified ATP8B1-AS1 and aimed to investigate the effects of m6A on the expression and role of ATP8B1-AS1 in HCC. Methods: qPCR was performed to measure the expression of related genes. The correlation between gene expression and prognosis was analyzed using public database. m6A modification level was measured using MeRIP and single-base elongation- and ligation-based qPCR amplification method. The roles of ATP8B1-AS1 in HCC were investigated using in vitro and in vivo functional assays. The mechanisms underlying the roles of ATP8B1-AS1 were investigated by ChIRP and ChIP assays. Results: ATP8B1-AS1 is highly expressed in HCC tissues and cell lines. High expression of ATP8B1-AS1 is correlated with poor overall survival of HCC patients. ATP8B1-AS1 is m6A modified and the 792 site of ATP8B1-AS1 is identified as an m6A modification site. m6A modification increases the stability of ATP8B1-AS1 transcript. m6A modification level of ATP8B1-AS1 is increased in HCC tissues and cell lines, and correlated with poor overall survival of HCC patients. ATP8B1-AS1 promotes HCC cell proliferation, migration, and invasion, which were abolished by the mutation of m6A-modified 792 site. Mechanistic investigation revealed that m6A-modified ATP8B1-AS1 interacts with and recruits m6A reader YTHDC1 and histone demethylase KDM3B to MYC promoter region, leading to the reduction of H3K9me2 level at MYC promoter region and activation of MYC transcription. Functional rescue assays showed that depletion of MYC largely abolished the oncogenic roles of ATP8B1-AS1. Conclusion: m6A modification level of ATP8B1-AS1 is increased and correlated with poor prognosis in HCC. m6A-modified ATP8B1-AS1 exerts oncogenic roles in HCC via epigenetically activating MYC expression.

7.
J Hepatocell Carcinoma ; 10: 1019-1035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435155

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the predominant histological type of primary liver cancer, which ranks sixth among the most common human tumors. Tumor-associated macrophages (TAMs) are an important component of tumor microenvironment (TME) and the M2 macrophage polarization substantially contributes to tumor growth and metastasis. Long non-coding RNA (lncRNA) MEG3 was reported to restrain HCC development. However, whether MEG3 regulates macrophage phenotypic polarization in HCC remains unclear. Methods: Bone marrow derived macrophages (BMDMs) were treated with LPS/IFNγ and IL4/IL13 to induce the M1 and M2 macrophage polarization, respectively. M2-polarized BMDMs were simultaneously transfected with adenovirus vector overexpressing MEG3 (Adv-MEG3). Subsequently, M2-polarized BMDMs were cultured for 24 h with serum-free medium, the supernatants of which were harvested as conditioned medium (CM). HCC cell line Huh7 was cultured with CM for 24 h. F4/80+CD68+ and F4/80+CD206+ cell percentages in M1-and M2-polarized BMDMs were calculated using flow cytometry. Huh7 cell migration, invasion and angiogenesis were determined via Transwell assay and tube formation experiment. Nude mice were implanted with Huh7 cells and Adv-MEG3-transfected M2-polarizd BMDMs, and tumor growth and M2 macrophage polarization markers were assessed. The binding between miR-145-5p and MEG3 or disabled-2 (DAB2) was verified by luciferase reporter assay. Results: MEG3 presented lower expression in HCC tissues than in normal controls, and low expression of MEG3 was correlated to poorer prognosis of HCC patients. MEG3 expression was enhanced during LPS/IFNγ-induced M1 polarization, but was reduced during IL4/IL13-induced M2 polarization. MEG3 overexpression inhibited the expression of M2 polarization markers in both M2-polarized BMDMs and mice. Mechanically, MEG3 bound with miR-145-5p to regulate DAB2 expression. Overexpressing MEG3 suppressed M2 polarization-induced HCC cell metastasis and angiogenesis by upregulating DAB2 and inhibited in vivo tumor growth. Conclusion: LncRNA MEG3 curbs HCC development by repressing M2 macrophage polarization via miR-145-5p/DAB2 axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...