Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 6(1): 61, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875658

RESUMEN

Emergency use authorization of COVID vaccines has brought hope to mitigate pandemic of coronavirus disease 2019 (COVID-19). However, there remains a need for additional effective vaccines to meet the global demand and address the potential new viral variants. mRNA technologies offer an expeditious path alternative to traditional vaccine approaches. Here we describe the efforts to utilize an mRNA platform for rational design and evaluations of mRNA vaccine candidates based on the spike (S) glycoprotein of SARS-CoV-2. Several mRNA constructs of S-protein, including wild type, a pre-fusion stabilized mutant (2P), a furin cleavage-site mutant (GSAS) and a double mutant form (2P/GSAS), as well as others, were tested in animal models for their capacity to elicit neutralizing antibodies (nAbs). The lead 2P/GSAS candidate was further assessed in dose-ranging studies in mice and Cynomolgus macaques, and for efficacy in a Syrian golden hamster model. The selected 2P/GSAS vaccine formulation, designated MRT5500, elicited potent nAbs as measured in neutralization assays in all three preclinical models and more importantly, protected against SARS-CoV-2-induced weight loss and lung pathology in hamsters. In addition, MRT5500 elicited TH1-biased responses in both mouse and non-human primate (NHP), thus alleviating a hypothetical concern of potential vaccine-associated enhanced respiratory diseases known associated with TH2-biased responses. These data position MRT5500 as a viable vaccine candidate for entering clinical development.

2.
NPJ Vaccines ; 5: 83, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983577

RESUMEN

Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.

3.
Int J Nanomedicine ; 13: 3689-3711, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983563

RESUMEN

BACKGROUND: Adjuvants have the potential to increase the efficacy of protein-based vaccines but need to be maintained within specific temperature and storage conditions. Lyophilization can be used to increase the thermostability of protein pharmaceuticals; however, no marketed vaccine that contains an adjuvant is currently lyophilized, and lyophilization of oil-in-water nanoemulsion adjuvants presents a specific challenge. We have previously demonstrated the feasibility of lyophilizing a candidate adjuvanted protein vaccine against Mycobacterium tuberculosis (Mtb), ID93 + GLA-SE, and the subsequent improvement of thermostability; however, further development is required to prevent physicochemical changes and degradation of the TLR4 agonist glucopyranosyl lipid adjuvant formulated in an oil-in-water nanoemulsion (SE). MATERIALS AND METHODS: In this study, we took a systematic approach to the development of a thermostable product by first identifying compatible solution conditions and stabilizing excipients for both antigen and adjuvant. Next, we applied a design-of-experiments approach to identify stable lyophilized drug product formulations. RESULTS: We identified specific formulations that contain disaccharide or a combination of disaccharide and mannitol that can achieve substantially improved thermostability and maintain immunogenicity in a mouse model when tested in accelerated and real-time stability studies. CONCLUSION: These efforts will aid in the development of a platform formulation for use with other similar vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Emulsiones/química , Nanopartículas/química , Temperatura , Vacunas contra la Tuberculosis/inmunología , Animales , Formación de Anticuerpos , Química Farmacéutica , Dispersión Dinámica de Luz , Excipientes , Femenino , Liofilización , Concentración de Iones de Hidrógeno , Inmunidad Celular , Lípidos/química , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Nefelometría y Turbidimetría , Tamaño de la Partícula , Tuberculosis/inmunología , Tuberculosis/patología
4.
Clin Vaccine Immunol ; 23(2): 137-47, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26656121

RESUMEN

Mycobacterium tuberculosis HN878 represents a virulent clinical strain from the W-Beijing family, which has been tested in small animal models in order to study its virulence and its induction of host immune responses following infection. This isolate causes death and extensive lung pathology in infected C57BL/6 mice, whereas lab-adapted strains, such as M. tuberculosis H37Rv, do not. The use of this clinically relevant isolate of M. tuberculosis increases the possibilities of assessing the long-lived efficacy of tuberculosis vaccines in a relatively inexpensive small animal model. This model will also allow for the use of knockout mouse strains to critically examine key immunological factors responsible for long-lived, vaccine-induced immunity in addition to vaccine-mediated prevention of pulmonary immunopathology. In this study, we show that the ID93/glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) tuberculosis vaccine candidate, currently in human clinical trials, is able to elicit protection against M. tuberculosis HN878 by reducing the bacterial burden in the lung and spleen and by preventing the extensive lung pathology induced by this pathogen in C57BL/6 mice.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Adyuvantes Inmunológicos , Animales , Carga Bacteriana , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Humanos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/aislamiento & purificación , Bazo/microbiología , Tuberculosis/microbiología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
5.
Vaccine ; 33(48): 6570-8, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26541135

RESUMEN

Pulmonary tuberculosis (TB) remains one of the leading causes of infectious disease death despite widespread usage of the BCG vaccine. A number of new TB vaccines have moved into clinical evaluation to replace or boost the BCG vaccine including ID93+GLA-SE, an adjuvanted subunit vaccine. The vast majority of new TB vaccines in trials are delivered parenterally even though intranasal delivery can augment lung-resident immunity and protective efficacy in small animal models. Parenteral immunization with the adjuvanted subunit vaccine ID93+GLA-SE elicits robust TH1 immunity and protection against aerosolized Mycobacterium tuberculosis in mice and guinea pigs. Here we describe the immunogenicity and efficacy of this vaccine when delivered intranasally. Intranasal delivery switches the CD4 T cell response from a TH1 to a TH17 dominated tissue-resident response with increased frequencies of ID93-specific cells in both the lung tissue and at the lung surface. Surprisingly these changes do not affect the protective efficacy of ID93+GLA-SE. Unlike intramuscular immunization, ID93+GLA does not require the squalene-based oil-in-water emulsion SE to elicit protective CD4 T cells when delivered intranasally. Finally we demonstrate that TNF and the IL-17 receptor are dispensable for the efficacy of the intranasal vaccine suggesting an alternative mechanism of protection.


Asunto(s)
Células TH1/inmunología , Células Th17/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Administración a través de la Mucosa , Animales , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Cobayas , Humanos , Ratones , Mycobacterium tuberculosis/inmunología , Fragmentos de Péptidos/inmunología , Factor de Necrosis Tumoral alfa/inmunología
6.
J Immunol ; 195(7): 3190-7, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26297758

RESUMEN

The discovery of new vaccines against infectious diseases and cancer requires the development of novel adjuvants with well-defined activities. The TLR4 agonist adjuvant GLA-SE elicits robust Th1 responses to a variety of vaccine Ags and is in clinical development for both infectious diseases and cancer. We demonstrate that immunization with a recombinant protein Ag and GLA-SE also induces granzyme A expression in CD4 T cells and produces cytolytic cells that can be detected in vivo. Surprisingly, these in vivo CTLs were CD4 T cells, not CD8 T cells, and this cytolytic activity was not dependent on granzyme A/B or perforin. Unlike previously reported CD4 CTLs, the transcription factors Tbet and Eomes were not necessary for their development. CTL activity was also independent of the Fas ligand-Fas, TRAIL-DR5, and canonical death pathways, indicating a novel mechanism of CTL activity. Rather, the in vivo CD4 CTL activity induced by vaccination required T cell expression of CD154 (CD40L) and target cell expression of CD40. Thus, vaccination with a TLR4 agonist adjuvant induces CD4 CTLs, which kill through a previously unknown CD154-dependent mechanism.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos CD40/inmunología , Ligando de CD40/inmunología , Linfocitos T Citotóxicos/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos CD40/biosíntesis , Ligando de CD40/biosíntesis , Citotoxinas/inmunología , Proteína Ligando Fas/inmunología , Granzimas/biosíntesis , Granzimas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Proteínas de Dominio T Box/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Células TH1/inmunología , Vacunación
7.
J Infect Dis ; 212(3): 495-504, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637347

RESUMEN

BACKGROUND: Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M. tuberculosis infection in both humans and unvaccinated experimental animal models. However, the immune responses necessary for vaccine efficacy against M. tuberculosis have not been defined. The multifunctional activity of T-helper type 1 (TH1) cells that simultaneously produce IFN-γ and TNF has been proposed as a candidate mechanism of vaccine efficacy. METHODS: We used a mouse model of T-cell transfer and aerosolized M. tuberculosis infection to assess the contributions of TNF, IFN-γ, and inducible nitric oxide synthase (iNOS) to vaccine efficacy. RESULTS: CD4(+) T cells were necessary and sufficient to transfer protection against aerosolized M. tuberculosis, but neither CD4(+) T cell-produced TNF nor host cell responsiveness to IFN-γ were necessary. Transfer of Tnf(-/-) CD4(+) T cells from vaccinated donors to Ifngr(-/-) recipients was also sufficient to confer protection. Activation of iNOS to produce reactive nitrogen species was not necessary for vaccine efficacy. CONCLUSIONS: Induction of TH1 cells that coexpress IFN-γ and TNF is not a requirement for vaccine efficacy against M. tuberculosis, despite these cytokines being essential for control of M. tuberculosis in nonvaccinated animals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interferón gamma/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Factor de Necrosis Tumoral alfa/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo II/inmunología , Receptores de Interleucina-17/inmunología , Vacunas contra la Tuberculosis/farmacología
8.
J Immunol ; 193(6): 2911-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25086172

RESUMEN

Unlike most pathogens, many of the immunodominant epitopes from Mycobacterium tuberculosis are under purifying selection. This startling finding suggests that M. tuberculosis may gain an evolutionary advantage by focusing the human immune response against selected proteins. Although the implications of this to vaccine development are incompletely understood, it has been suggested that inducing strong Th1 responses against Ags that are only weakly recognized during natural infection may circumvent this evasion strategy and increase vaccine efficacy. To test the hypothesis that subdominant and/or weak M. tuberculosis Ags are viable vaccine candidates and to avoid complications because of differential immunodominance hierarchies in humans and experimental animals, we defined the immunodominance hierarchy of 84 recombinant M. tuberculosis proteins in experimentally infected mice. We then combined a subset of these dominant or subdominant Ags with a Th1 augmenting adjuvant, glucopyranosyl lipid adjuvant in stable emulsion, to assess their immunogenicity in M. tuberculosis-naive animals and protective efficacy as measured by a reduction in lung M. tuberculosis burden of infected animals after prophylactic vaccination. We observed little correlation between immunodominance during primary M. tuberculosis infection and vaccine efficacy, confirming the hypothesis that subdominant and weakly antigenic M. tuberculosis proteins are viable vaccine candidates. Finally, we developed two fusion proteins based on strongly protective subdominant fusion proteins. When paired with the glucopyranosyl lipid adjuvant in stable emulsion, these fusion proteins elicited robust Th1 responses and limited pulmonary M. tuberculosis for at least 6 wk postinfection with a single immunization. These findings expand the potential pool of M. tuberculosis proteins that can be considered as vaccine Ag candidates.


Asunto(s)
Epítopos Inmunodominantes/inmunología , Mycobacterium tuberculosis/inmunología , Proteínas Recombinantes de Fusión/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Femenino , Ratones , Células TH1/inmunología , Tuberculosis Pulmonar/prevención & control , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...