Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 73(8): 1914-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20701974

RESUMEN

Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains.


Asunto(s)
Lluvia Ácida/toxicidad , Enzimas/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Fosfatasa Ácida/metabolismo , Amilasas/metabolismo , Catalasa/metabolismo , China , Simulación por Computador , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Factores de Tiempo , Ureasa/metabolismo
2.
Arch Environ Contam Toxicol ; 52(1): 16-21, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17083000

RESUMEN

Acid rain is a serious environmental problem in the world and is of a particular concern in southern China where most of the soils are acidic. This study investigated the dynamics of cations, phosphorus (P), and soil organic matter (SOM) in the Latosol (acidic red soil) from south China under the influences of simulated acid rain (SAR). Laboratory experiments were performed by leaching the soil columns with SAR at pH levels ranging from 2.5 to 7.0 over a 21-day experimental period. Results show that about 34, 46, 20, and 77% of the original exchangeable soil Ca(+2), Mg(+2), K(+), and Na(+), respectively, were leached out by the SAR at pH 2.5 after 21 days. Two distinct patterns of the available phosphorus (AP) concentrations were observed: one at pH< or =3.5 and the other at pH > or = 4.0. At pH< or =3.5, concentrations of the AP increased from the beginning of the experiments to day 5, then decreased from day 5 to 15, and finally increased from day 15 to the end of the experiments. At pH > or = 4.0, concentrations of the AP increased consecutively from the beginning of the experiments to day 10 and decreased from day 10 to the end of the experiments. Such a finding is useful for agricultural practices since soil P is one of the most important macronutrients for plant growth. In general, SOM content decreased with time as the Latosol was leached by the SAR at all pH levels. A maximum concentration of soil fulvic acid was found after 15 days of the experiments due to the degradation of the SOM. A multiple regression analysis showed that a very strong relationship was obtained between the soil AP and the other three parameters (i.e., pH, SOM, and sorption P).


Asunto(s)
Lluvia Ácida , Cationes/química , Sustancias Húmicas/análisis , Fósforo/química , Suelo/análisis , Agricultura , China , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...