Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2385-2398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33656996

RESUMEN

With the rapid development of bioinformatics and the availability of genetic sequencing technologies, genomic data has been used to facilitate personalized medicine. Cloud computing, features as low cost, rich storage and rapid processing can precisely respond to the challenges brought by the emergence of massive genomic data. Considering the security of cloud platform and the privacy of genomic data, we first introduce P2GT which utilizes key-policy attribute-based encryption to realize genomic data access control with unbounded attributes, and employs equality test algorithm to achieve personalized medicine test by matching digitized single nucleotide polymorphisms (SNPs) directly on the users' ciphertext without encrypting multiple times. We then propose an enhanced scheme P2GT+, which adopts identity-based encryption with equality test supporting flexible joint authorization to realize privacy-preserving paternity test, genetic compatibility test and disease susceptibility test over the encrypted SNPs with P2GT. We prove the security of proposed schemes and conduct extensive experiments with the 1,000 Genomes dataset. The results show that P2GT and P2GT+ are practical and scalable enough to meet the privacy-preserving and authorized genetic testing requirements in cloud computing.


Asunto(s)
Nube Computacional , Privacidad , Algoritmos , Seguridad Computacional , Genómica
2.
Sensors (Basel) ; 18(2)2018 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-29495269

RESUMEN

With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...