Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731861

RESUMEN

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Asunto(s)
Trampas Extracelulares , Lactoferrina , Moléculas de Adhesión de Célula Nerviosa , Ácidos Siálicos , Lactoferrina/farmacología , Lactoferrina/metabolismo , Humanos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Heparina de Bajo-Peso-Molecular/farmacología
2.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615033

RESUMEN

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Asunto(s)
Movimiento Celular
3.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016390

RESUMEN

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Asunto(s)
Industria Farmacéutica , Medicamentos Herbarios Chinos , Flavonoides , Microbiología Industrial , Catálisis , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Escherichia coli/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética , Paenibacillus/enzimología , Paenibacillus/genética , Microbiología Industrial/métodos , Industria Farmacéutica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Flavonoides/biosíntesis , Hidrólisis
4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499451

RESUMEN

Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa , Sialiltransferasas , Animales , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sialiltransferasas/metabolismo , Ácidos Siálicos/metabolismo , Espectroscopía de Resonancia Magnética , Aminoácidos , Mamíferos/metabolismo
5.
Curr Top Med Chem ; 21(13): 1113-1120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34259146

RESUMEN

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Heparina/farmacología , Sialiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Heparina/química , Humanos , Dominios Proteicos/efectos de los fármacos , Sialiltransferasas/metabolismo
6.
J Sci Food Agric ; 101(6): 2472-2482, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33034040

RESUMEN

BACKGROUND: Exoinulinase catalyzes the successive removal of individual fructose moiety from the non-reducing end of the inulin molecule, which is useful for biotechnological applications like producing fructan-based non-grain biomass energy and high-fructose syrup. In this study, an exoinulinase (KmINU) from Kluyveromyces marxianus DSM 5418 was tailored for increased catalytic activity and acidic adaptation for inulin hydrolysis processes by rational site-directed mutagenesis. RESULTS: Three mutations, S124Y, N158S and Q215V distal to the catalytic residues of KmINU were designed and heterologously expressed in Pichia pastoris GS115. Compared to the wild-type, S124Y shifted the pH-activity profile towards acidic pH values and increased the catalytic activity and catalytic efficiency by 59% and 99% to 688.4 ± 17.03 s-1 and 568.93 L mmol-1 s-1 , respectively. N158S improved the catalytic activity under acidic pH conditions, giving a maximum value of 464.06 ± 14.06 s-1 on inulin at pH 4.5. Q215V markedly improved the substrate preference for inulin over sucrose by 5.56-fold, and showed catalytic efficiencies of 208.82 and 6.88 L mmol-1 s-1 towards inulin and sucrose, respectively. Molecular modeling and computational docking indicated that structural reorientation may underlie the increased catalytic activity, acidic adaptation and substrate preference. CONCLUSIONS: The KmINU mutants may serve as industrially promising candidates for inulin hydrolysis. Protein engineering of exoinulinase here provides a successful example of the extent to which mutating non-conserved substrate recognition and binding residues distal to the active site can be used for industrial enzyme improvements. © 2020 Society of Chemical Industry.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Kluyveromyces/enzimología , Ácidos/metabolismo , Catálisis , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Inulina/metabolismo , Cinética , Kluyveromyces/química , Kluyveromyces/genética , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas
7.
Appl Biochem Biotechnol ; 192(1): 57-70, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32219624

RESUMEN

This study reported simultaneously improved thermostability and hydrolytic pattern of α-amylase from Bacillus subtilis CN7 by rationally engineering the mostly conserved central beta strands in TIM barrel fold. Nine single point mutations and a double mutation were introduced at the 2nd site of the ß7 strand and 3rd site of the ß5 strand to rationalize the weak interactions in the beta strands of the TIM barrel of α-amylase. All the five active mutants changed the compositions and percentages of maltooligosaccharides in final hydrolytic products compared to the product spectrum of the wild-type. A mutant Y204V produced only maltose, maltotriose, and maltopentaose without any glucose and maltotetraose, indicating a conversion from typical endo-amylase to novel maltooligosaccharide-producing amylase. A mutant V260I enhanced the thermal stability by 7.1 °C. To our best knowledge, this is the first report on the simultaneous improvement of thermostability and hydrolytic pattern of α-amylase by engineering central beta strands of TIM barrel and the novel "beta strands" strategy proposed here may be useful for the protein engineering of other TIM barrel proteins.


Asunto(s)
Bacillus subtilis/enzimología , Páncreas/enzimología , Ingeniería de Proteínas/métodos , alfa-Amilasas/química , Animales , Aspergillus oryzae , Bacillus amyloliquefaciens , Bacillus licheniformis , Glucosa/química , Hidrólisis , Maltosa/análogos & derivados , Maltosa/química , Mutagénesis Sitio-Dirigida , Oligosacáridos/química , Mutación Puntual , Estructura Secundaria de Proteína , Pseudoalteromonas , Pyrococcus , Porcinos , Temperatura , Trisacáridos/química
8.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111064

RESUMEN

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Imagen por Resonancia Magnética/métodos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerizacion , Conformación Proteica , Dominios Proteicos
9.
Curr Top Med Chem ; 19(31): 2831-2841, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31755393

RESUMEN

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Sialiltransferasas/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/química , Humanos , Mutación Puntual , Dominios Proteicos , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
10.
Curr Top Med Chem ; 19(25): 2348-2356, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648637

RESUMEN

Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.


Asunto(s)
Acetoína/metabolismo , Productos Biológicos/metabolismo , Acetoína/química , Productos Biológicos/química , Conformación Molecular
11.
Curr Top Med Chem ; 19(25): 2271-2282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648641

RESUMEN

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Asunto(s)
Movimiento Celular , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Animales , Humanos , Moléculas de Adhesión de Célula Nerviosa/química , Ácidos Siálicos/química
12.
Protein Pept Lett ; 26(2): 148-157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30652633

RESUMEN

BACKGROUND: α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology. OBJECTIVE: In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL. METHODS: α-Amylase activity was assayed with soluble starch as the substrate, and the amount of sugar released was determined by DNS method. For AGXA with calcium ions and without calcium ions, optimum temperature (Topt), half-inactivation temperature (T50) and thermal inactivation (halflife, t1/2) was evaluated. The thermal denaturation of the enzymes was determined by DSC and CD methods. 3D structure of AGXA was homology modeled with α-amylase (5A2A) as the template. RESULTS: With calcium ions, the values of Topt, T50, t1/2, Tm and ΔH in AGXA were significantly higher than those of AGXA without calcium ions, showing calcium ions had stabilizing effects on α-amylase structure with the increased temperature. Based on DSC measurements AGXA underwent thermal denaturation by adopting two-state irreversible unfolding processes. Based on the CD spectra, AGXA without calcium ions exhibited two transition states upon unfolding, including α- helical contents increasing, and the transition from α-helices to ß-sheet structures, which was obviously different in AGXA with Ca2+ ions, and up to 4 Ca2+ ions were located on the inter-domain or intra-domain regions according to the modeling structure. CONCLUSION: These results reveal that Ca2+ ions have pronounced influences on the thermostability of AGXA structure.


Asunto(s)
Anoxybacillus/enzimología , Calcio/química , alfa-Amilasas/química , Estabilidad de Enzimas , Iones/química , Cinética , Conformación Proteica , Pliegue de Proteína , Temperatura , Termodinámica , alfa-Amilasas/aislamiento & purificación
13.
Med Chem ; 15(5): 510-520, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30556504

RESUMEN

BACKGROUND: Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level. Most inhibitors of α-amylase have serious adverse effects, and the α-amylase inactivation mechanisms for the design of safer inhibitors are yet to be revealed. OBJECTIVE: In this study, we focused on the inhibitory effect of Zn2+ on the structure and dynamic characteristics of α-amylase from Anoxybacillus sp. GXS-BL (AGXA), which shares the same catalytic residues and similar structures as human pancreatic and salivary α-amylase (HPA and HSA, respectively). METHODS: Circular dichroism (CD) spectra of the protein (AGXA) in the absence and presence of Zn2+ were recorded on a Chirascan instrument. The content of different secondary structures of AGXA in the absence and presence of Zn2+ was analyzed using the online SELCON3 program. An AGXA amino acid sequence similarity search was performed on the BLAST online server to find the most similar protein sequence to use as a template for homology modeling. The pocket volume measurer (POVME) program 3.0 was applied to calculate the active site pocket shape and volume, and molecular dynamics simulations were performed with the Amber14 software package. RESULTS: According to circular dichroism experiments, upon Zn2+ binding, the protein secondary structure changed obviously, with the α-helix content decreasing and ß-sheet, ß-turn and randomcoil content increasing. The structural model of AGXA showed that His217 was near the active site pocket and that Phe178 was at the outer rim of the pocket. Based on the molecular dynamics trajectories, in the free AGXA model, the dihedral angle of C-CA-CB-CG displayed both acute and planar orientations, which corresponded to the open and closed states of the active site pocket, respectively. In the AGXA-Zn model, the dihedral angle of C-CA-CB-CG only showed the planar orientation. As Zn2+ was introduced, the metal center formed a coordination interaction with H217, a cation-π interaction with W244, a coordination interaction with E242 and a cation-π interaction with F178, which prevented F178 from easily rotating to the open state and inhibited the activity of the enzyme. CONCLUSION: This research may have uncovered a subtle mechanism for inhibiting the activity of α-amylase with transition metal ions, and this finding will help to design more potent and specific inhibitors of α-amylases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Zinc/farmacología , alfa-Amilasas/antagonistas & inhibidores , Anoxybacillus/enzimología , Dominio Catalítico , Dicroismo Circular , Inhibidores Enzimáticos/metabolismo , Simulación de Dinámica Molecular , Fenilalanina/química , Unión Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa/efectos de los fármacos , Conformación Proteica en Lámina beta/efectos de los fármacos , Zinc/metabolismo , alfa-Amilasas/química , alfa-Amilasas/aislamiento & purificación , alfa-Amilasas/metabolismo
14.
Med Chem ; 15(5): 486-495, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30569872

RESUMEN

BACKGROUND: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


Asunto(s)
Heparina de Bajo-Peso-Molecular/metabolismo , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Espectroscopía de Resonancia Magnética con Carbono-13 , Dicroismo Circular , Humanos , Unión Proteica , Dominios Proteicos , Espectroscopía de Protones por Resonancia Magnética , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Espectrometría de Fluorescencia
15.
Curr Pharm Des ; 24(34): 4023-4033, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30421671

RESUMEN

BACKGROUND: The relationship between protein structure and its bioactivity is one of the fundamental problems for protein engineering and pharmaceutical design. METHOD: A new method, called SPTD (Simulated Protein Thermal Detection), was proposed for studying and improving the thermal stability of enzymes. The method was based on the evidence observed by conducting the MD (Molecular Dynamics) simulation for all the atoms of an enzyme vibrating from the velocity at a room temperature (e.g., 25°C) to the desired working temperature (e.g., 65°C). According to the recorded MD trajectories and the coordinate deviations of the constituent residues under the two different temperatures, some new strategies have been found that are useful for both drug delivery and starch industry. CONCLUSION: The SPTD technique presented in this paper may become a very useful tool for pharmaceutical design and protein engineering.


Asunto(s)
Bacillus/enzimología , Glicósido Hidrolasas/química , Temperatura , Animales , Estabilidad de Enzimas , Glicósido Hidrolasas/metabolismo , Humanos , Ingeniería de Proteínas
16.
Nanomaterials (Basel) ; 8(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042305

RESUMEN

Graphene microcrystal (GMC) is a type of glassy carbon fabricated from lignin, in which the microcrystals of graphene are chemically bonded by sp³ carbon atoms, forming a glass-like microcrystal structure. The lignin is refined from sugarcane bagasse using an ethanol-based organosolv technique which is used for the fabrication of GMC by two technical schemes: The pyrolysis reaction of lignin in a tubular furnace at atmospheric pressure; and the hydrothermal carbonization (HTC) of lignin at lower temperature, followed by pyrolysis at higher temperature. The existence of graphene nanofragments in GMC is proven by Raman spectra and XRD patterns; the ratio of sp² carbon atoms to sp³ carbon atoms is demonstrated by XPS spectra; and the microcrystal structure is observed in the high-resolution transmission electron microscope (HRTEM) images. Temperature and pressure have an important impact on the quality of GMC samples. With the elevation of temperature, the fraction of carbon increases, while the fraction of oxygen decreases, and the ratio of sp² to sp³ carbon atoms increases. In contrast to the pyrolysis techniques, the HTC technique needs lower temperatures because of the high vapor pressure of water. In general, with the help of biorefinery, the biomass material, lignin, is found to be qualified and sustainable material for the manufacture of GMC. Lignin acts as a renewable substitute for the traditional raw materials of glassy carbon, copolymer resins of phenol formaldehyde, and furfuryl alcohol-phenol.

17.
PLoS One ; 13(6): e0197188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856735

RESUMEN

Sugarcane bagasse was refined into cellulose, hemicellulose, and lignin using an ethanol-based organosolv technique. The hydrothermal carbonization (HTC) reactions were applied for bagasse and its two components cellulose and lignin. Based on GC-MS analysis, 32 (13+19) organic byproducts were derived from cellulose and lignin, more than the 22 byproducts from bagasse. Particularly, more valuable catechol products were obtained from lignin with 56.8% share in the total GC-MS integral area, much higher than the 2.263% share in the GC-MS integral areas of bagasse. The organic byproducts from lignin make up more than half of the total mass of lignin, indicating that lignin is a chemical treasure storage. In general, bio-refinery and HTC are two effective techniques for the valorization of bagasse and other biomass materials from agriculture and forest industry. HTC could convert the inferior biomass to superior biofuel with higher energy quantity of combustion, at the same time many valuable organic byproducts are produced. Bio-refinery could promote the HTC reaction of biomass more effective. With the help of bio-refinery and HTC, bagasse and other biomass materials are not only the sustainable energy resource, but also the renewable and environment friendly chemical materials, the best alternatives for petroleum, coal and natural gas.


Asunto(s)
Biomasa , Celulosa/química , Lignina/química , Saccharum/química
18.
RSC Adv ; 8(53): 30512-30519, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35546830

RESUMEN

Acetoin is an important platform chemical with a variety of applications in foods, cosmetics, chemical synthesis, and especially in the asymmetric synthesis of optically active pharmaceuticals. It is also a useful breath biomarker for early lung cancer diagnosis. In order to enhance production of optical (S)-acetoin and facilitate this building block for a series of chiral pharmaceuticals derivatives, we have developed a systematic approach using in situ-NADH regeneration systems and promising diacetyl reductase. Under optimal conditions, we have obtained 52.9 g L-1 of (S)-acetoin with an enantiomeric purity of 99.5% and a productivity of 6.2 g (L h)-1. The results reported in this study demonstrated that the production of (S)-acetoin could be effectively improved through the engineering of cofactor regeneration with promising diacetyl reductase. The systematic approach developed in this study could also be applied to synthesize other optically active α-hydroxy ketones, which may provide valuable benefits for the study of drug development.

19.
Oncotarget ; 8(41): 70564-70578, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050302

RESUMEN

A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.

20.
Curr Top Med Chem ; 17(21): 2433-2439, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28474550

RESUMEN

(2R,3R)-2,3-Butanediol has many industrial applications, such as it is used as an antifreeze agent and low freezing point fuel. In addition, it is particularly important to provide chiral groups in drugs. In recent years, this valuable bio-based chemical has attracted increasing attention, and significant progress has been made in the development of microbial cell factories for (2R,3R)-2,3-butanediol production. This article reviews recent advances and challenges in microbial routes to (2R,3R)-2,3- butanediol production, and highlights the metabolic engineering and synthetic biological approaches used to improve titers, yields, productivities, and optical purities. Finally, a systematic and integrative strategy for developing high-performance microbial cell factories is proposed.


Asunto(s)
Bacillus subtilis/metabolismo , Butileno Glicoles/metabolismo , Ingeniería Metabólica , Paenibacillus polymyxa/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Butileno Glicoles/química , Paenibacillus polymyxa/citología , Paenibacillus polymyxa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...