Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 220: 116006, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142838

RESUMEN

Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Humanos , Adenosina , Difosfatos , Inmunoterapia , Neoplasias/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Microambiente Tumoral
2.
Int Immunopharmacol ; 113(Pt A): 109304, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252492

RESUMEN

Cancer immunotherapy with immune checkpoint inhibitors has achieved unprecedented success in cancer treatment; However, only a subset of patients achieved clinical benefit from this treatment, underscoring the urgent need to identify new strategies to enhance the clinical efficacy of immune checkpoint inhibitors. Given the essential role of innate immunity in cancer immune surveillance, tremendous effort has been focused on the innate immune pathways that can be pharmacologically modulated to improve the clinical outcome of checkpoint inhibitors. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays essential roles in host defense against cancers. Activation of the cGAS-STING signaling pathway induces the expression of type I interferons and proinflammatory cytokines, culminating in promotion of a robust adaptive antitumor immunity. As part of this innate immune signaling pathway, STING is ubiquitously expressed in immune and nonimmune cells. STING activation has been demonstrated to propagate the cancer immunity cycle, remodel the tumor microenvironment, and ultimately eliminate tumor cells. The immunomodulatory roles of STING enable it to be an appealing target for cancer immunotherapy. As such, STING agonists that are capable of triggering antitumor immune responses have been developed in recent years, and several of them have advanced into clinical trials. In this review, we first give an overview on the STING signaling pathway, then dissect the roles of STING activation in different steps of the cancer immunity cycle and finally discuss the development of STING agonists as well as challenges with STING activation, with the potential to make cancer immunotherapy with STING agonists more effective.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de la Membrana/metabolismo , Inmunoterapia , Nucleotidiltransferasas/metabolismo , Neoplasias/patología , Inmunidad Innata , Microambiente Tumoral
3.
Eur J Med Chem ; 125: 940-951, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27769034

RESUMEN

A new series of [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1 inhibitors were designed, synthesized, and further evaluated for their cytotoxicity against MGC-803, EC109, A549 and PC-9 cells as well as the ability of inhibiting LSD1. Some of these compounds showed potent inhibition toward LSD1 and selectively inhibited growth of A549 and PC-9 cells. Compound 6l potently inhibited growth of PC-9 cells (IC50 = 0.59 µM), about 4-fold more potent than 5-FU. Further SARs studies led to the identification of compounds 6l-m, which had good growth inhibition against all the tested cancer cell lines and were much more potent than 5-FU and GSK2879552. Besides, compounds 5p, 5q and 6i inhibited LSD1 potently (IC50 = 0.154, 1.19 and 0.557 µM, respectively). Docking studies revealed that compound 5p formed arene-H interactions with Val333 and hydrogen bonds with surrounding Ala331, Met332, and Ala539 residues. Compound 5p significantly inhibited migration of A549 and PC-9 cells in a concentration-dependent manner, but had different effect on the expression of E-cadherin and N-cadherin. The [1,2,4]triazolo[1,5-a]pyrimidine scaffold may serve as a starting point for developing potent LSD1 inhibitors for cancer therapy.


Asunto(s)
Histona Demetilasas/antagonistas & inhibidores , Pirimidinas/farmacología , Animales , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Pirimidinas/síntesis química , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/farmacología
4.
Eur J Med Chem ; 117: 241-55, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27105028

RESUMEN

A series of steroidal hybrids with different terminal bioactive scaffolds were synthesized using the molecular hybridization approach and further evaluated for their antiproliferative activity against several cancer cell lines of different origins using the MTT assay. The preliminary results indicated that compounds 12a-h with the terminal isatin motif were remarkably sensitive to SH-SY5Y cells, thereby exerting potent growth inhibition in vitro. This selectivity is possibly attributed to LSD1 inactivation (IC50 = 3.18 µM). Besides, we also found that the chloro atom at the 7-position on the isatin core was beneficial for the activity through the SARs studies. Among this series, compound 12g showed the best inhibitory activity (IC50 = 4.06 µM) against SH-SY5Y cells, which was comparable to that of 5-FU. Compound 12g arrested cell cycle at G2/M phase, induced apoptosis accompanied with decrease of mitochondrial membrane potential, and inhibited LSD1 potently (IC50 = 3.18 µM). Docking studies showed that compound 12g formed interactions with surrounding amino acid residues and the steroid nucleus occupied the tubular hydrophobic cavity of the active site. Compounds 13-18 represented weak to moderate activity against the tested cancer cell lines. The steroidal dimer 20 and the structurally simplified non-steroidal dimer 21 were found to be devoid of the inhibitory activity.


Asunto(s)
Antineoplásicos/química , Esteroides/síntesis química , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Isatina/química , Isatina/farmacología , Simulación del Acoplamiento Molecular , Esteroides/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...