Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Photochem Photobiol Sci ; 23(3): 463-478, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326693

RESUMEN

UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-ß and wingless-related integration site (Wnt)/ß-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), ß-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/ß-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating ß-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Envejecimiento de la Piel , Vía de Señalización Wnt , Humanos , beta Catenina/metabolismo , beta Catenina/farmacología , Línea Celular , Colágeno/farmacología , Queratinocitos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta
2.
Nutrients ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678166

RESUMEN

Genetic and environmental factors are associated with developing and progressing duodenal ulcer (DU) risk. However, the exact nature of the disease pathophysiology and the single nucleotide polymorphism (SNP)-lifestyle interaction has yet to be determined. The purpose of the present study was to examine the SNPs linked to DU risk and their interaction with lifestyles and diets in a large hospital-based cohort of Asians. Based on an earlier diagnosis, the participants were divided into the DU (case; n = 1088) and non-DU (control, n = 56,713) groups. The SNP associated with DU risk were obtained from a genome-wide association study (GWAS), and those promoted genetic impact with SNP-SNP interactions were identified with generalized multifactor dimensionality reduction analysis. The interaction between polygenic risk score (PRS) calculated from the selected genetic variants and nutrient were examined. They were related to actin modification, immune response, and cell migration by modulating leucine-rich repeats (LRR) domain binding, Shaffer interferon regulatory factor 4 (IRF4) targets in myeloma vs. mature B lymphocyte, and Reactome runt-related transcription factor 3 (RUNX3). Among the selected SNPs, rs11230563 (R225W) showed missense mutation and low binding affinity with different food components in the autodock analysis. Glycyrrhizin, physalin B, janthitrem F, and casuarinin lowered it in only wild CD6 protein but not in mutated CD6. Plastoquinone 8, solamargine, saponin D, and matesaponin 2 decreased energy binding affinity in mutated CD6 proteins. The PRS of the 5-SNP and 6-SNP models exhibited a positive association with DU risk (OR = 3.14). The PRS of the 5-SNP PRS model interacted with irregular eating habits and smoking status. In participants with irregular eating habits or smokers, DU incidence was much higher in the participants with high PRS than in those with low PRS. In conclusion, the genetic impact of DU risk was mainly in regulating immunity, inflammation, and actin modification. Adults who are genetically susceptible to DU need to eat regularly and to be non-smokers. The results could be applied to personalize nutrition.


Asunto(s)
Úlcera Duodenal , Estudio de Asociación del Genoma Completo , Adulto , Humanos , Actinas , Úlcera Duodenal/genética , Conducta Alimentaria , Predisposición Genética a la Enfermedad , Inflamación/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Herencia Multifactorial
3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142744

RESUMEN

Bioactive compounds in some herbs can, directly and indirectly, protect against photoaging. We evaluated the effects of Gastrodia elata Blume (GE) and Poria cocos Wolf (PC) water extracts on ultraviolet (UV) B-induced skin lesions by acute UVB exposure in ICR mice and explored their mechanism of action. After removing the hair on the back of the mice, UVB (280-310 nm) was exposed to the back for 30 min to induce skin damage. Four UVB exposure groups were divided into the following according to the local application (1,3-butanediol extract) on the dorsal skin and oral intake (0.3 g water extract/kg body weight/day): 1,3-butanediol and cellulose(control; UV-Con), retinoic acid (positive-control; UV-Positive), PC extracts (UV-PC), and GE extracts (UV-GE). The fifth group had no UVB exposure with the same treatment as the UV-Con (Normal-control). The erythema, burns, erosion, and wounds of the UV-PC and UV-PC groups were alleviated, and the most significant improvements occurred in the UV-PC group. PC and GE reduced the thickness of the dorsal skin tissue, the penetration of mast cells, and malondialdehyde contents. The mRNA expression of TNF-α, IL-13, and IL-4, inflammatory factors, were also reduced significantly in the dorsal skin of the UV-PC and UV-GE groups. UV-PC, UV-GE, and UV-Positive showed improvements in UV-induced intestinal tissue inflammation. UV-Con deteriorated the intestinal morphology, and PC and GE alleviated it. The α-diversity of the fecal microbiota decreased in the UV-control, and UV-PC and UV-GE prevented the decrease. Fecal metagenome analysis revealed increased propionate biosynthesis in the UV-PC group but decreased lipopolysaccharide biosynthesis in the UV-PC and UV-GE groups compared to UV-Con. In conclusion, the local application and intake of PC and GE had significant therapeutic effects on acute UV-induced skin damage by reducing oxidative stress and proinflammatory cytokines, potentially promoting the gut-microbiota-gut-skin axis.


Asunto(s)
Gastrodia , Wolfiporia , Agaricales , Animales , Butileno Glicoles , Celulosa , Inflamación/tratamiento farmacológico , Interleucina-13 , Interleucina-4 , Intestinos , Lipopolisacáridos , Malondialdehído , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Propionatos , ARN Mensajero , Piel , Tretinoina , Factor de Necrosis Tumoral alfa/genética , Rayos Ultravioleta , Agua
4.
Cells ; 11(15)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892598

RESUMEN

Attenuating acetylcholinesterase and insulin/insulin-like growth factor-1 signaling in the hippocampus is associated with Alzheimer's disease (AD) development. Fucoidan and carrageenan are brown and red algae, respectively, with potent antibacterial, anti-inflammatory, antioxidant and antiviral activities. This study examined how low-molecular-weight (MW) and high-MW fucoidan and λ-carrageenan would improve memory impairment in Alzheimer's disease-induced rats caused by an infusion of toxic amyloid-ß(Aß). Fucoidan and λ-carrageenan were dissected into low-MW by Luteolibacter algae and Pseudoalteromonas carrageenovora. Rats receiving an Aß(25-35) infusion in the CA1 region of the hippocampus were fed dextrin (AD-Con), 1% high-MW fucoidan (AD-F-H), 1% low-MW fucoidan (AD-F-L), 1% high-MW λ-carrageenan (AD-C-H), and 1% low-MW λ-carrageenan (AD-C-L) for six weeks. Rats to receive saline infusion (Normal-Con) had an AD-Con diet. The AD-F-L group showed an improved memory function, which manifested as an enhanced Y-maze spontaneous alternation test, water maze, and passive avoidance tests, similar to the Normal-Con group. AD-F-L also potentiated hippocampal insulin signaling and increased the expression of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the hippocampus. AD-C-L improved the memory function mainly by increasing the BDNF content. AD-F-H and AD-C-H did not improve the memory function. Compared to AD-Con, the ascending order of AD-C-H, AD-F-H, AD-C-L, and AD-F-L increased insulin signaling by enhancing the pSTAT3®pAkt®pGSK-3ß pathway. AD-F-L improved glucose tolerance the most. Compared to AD-CON, the AD-F-L treatment increased the serum acetate concentrations and compensated for the defect of cerebral glucose metabolism. AD-Con increased Clostridium, Terrisporobacter and Sporofaciens compared to Normal-Con, and AD-F-L and AD-C-L increased Akkermentia. In conclusion, AD-F-L and AD-C-L alleviated the memory function in the rats with induced AD symptoms by modulating.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carragenina/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Insulina/metabolismo , Trastornos de la Memoria/complicaciones , Metagenoma , Polisacáridos , Ratas
5.
J Appl Microbiol ; 133(2): 362-374, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35365862

RESUMEN

AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Bacterias , Bifidobacterium , Células CACO-2 , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Humanos , Lactobacillus/genética , Mucinas/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ruminococcus
6.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35328781

RESUMEN

No study has revealed the effect of porcine brain enzyme hydrolysate (PBEH) on memory impairment. We aimed to examine the hypothesis that PBEH intake modulates memory deficits and cognitive behavior in scopolamine (SC)-induced amnesia rats, and its mechanism, including gut microbiota changes, was determined. Sprague-Dawley male rats had intraperitoneal injections of SC (2 mg/kg body weight/day) at 30 min after daily feeding of casein (MD-control), PBEH (7 mg total nitrogen/mL) at 0.053 mL (Low-PBEH), 0.159 mL (Medium-PBEH), 0.478 mL (High-PBEH), or 10 mg donepezil (Positive-control) per kilogram body weight per day through a feeding needle for six weeks. The Normal-control rats had casein feeding without SC injection. PBEH dose-dependently protected against memory deficits determined by passive avoidance test, Y-maze, water-maze, and novel object recognition test in SC-induced rats compared to the MD-control. The High-PBEH group had a similar memory function to the Positive-control group. Systemic insulin resistance determined by HOMA-IR was lower in the PBEH groups than in the Normal-control but not the Positive-control. In parallel with systemic insulin resistance, decreased cholesterol and increased glycogen contents in the hippocampus in the Medium-PBEH and High-PBEH represented reduced brain insulin resistance. PBEH intake prevented the increment of serum TNF-α and IL-1ß concentrations in the SC-injected rats. Hippocampal lipid peroxide and TNF-α contents and mRNA TNF-α and IL-1ß expression were dose-dependently reduced in PBEH and Positive-control. PBEH decreased the hippocampal acetylcholinesterase activity compared to the MD-control, but not as much as the Positive-control. PBEH intake increased the α-diversity of the gut microbiota compared to the MD-control, and the gut microbiota community was separated from MD-control. In metagenome function analysis, PBEH increased the energy metabolism-related pathways of the gut microbiota, including citric acid cycle, oxidative phosphorylation, glycolysis, and amino acid metabolism, which were lower in the MD-control than the Normal-control. In conclusion, alleviated memory deficit by PBEH was associated potentially with not only reducing acetylcholinesterase activity but also improving brain insulin resistance and neuroinflammation potentially through modulating gut microbiota. PBEH intake (1.5-4.5 mL of 7 mg total nitrogen/mL for human equivalent) can be a potential therapeutic agent for improving memory impairment.


Asunto(s)
Resistencia a la Insulina , Escopolamina , Acetilcolinesterasa/metabolismo , Amnesia/tratamiento farmacológico , Animales , Peso Corporal , Encéfalo/metabolismo , Caseínas/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Nitrógeno/metabolismo , Ratas , Ratas Sprague-Dawley , Escopolamina/efectos adversos , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo
7.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805984

RESUMEN

The incidence of thyroid cancer continues to increase steadily, and this increasing incidence cannot be attributed solely to the overdiagnosis of microcarcinoma or technical advancements in detection methods and may also depend on environmental and genetic factors. However, the impacts and interactions of genetic and environmental factors remain controversial, and they may differ in Eastern and Western countries. The study's purpose was to identify single nucleotide polymorphisms of genes related to cell differentiation and inflammation to influence thyroid cancer incidence and determine interactions with lifestyles in a large city hospital-based cohort. Genetic variants were selected by genome-wide association study with thyroid cancer participants (case; n = 495) and controls without cancers (n = 56,439). SNPs having gene-gene interactions were selected by generalized multifactor dimensionality reduction. Polygenic risk scores (PRSs) were generated by summing the number of selected SNP risk alleles. PRSs of the best model included 6 SNPs, that is, DIRC3_rs6759952, GAP43_rs13059137, NRG1_rs7834206, PROM1_rs72616195, LRP1B_rs1369535, and LOC100507065_rs11175834. Participants with a high-PRS had a higher thyroid cancer risk by 3.9-fold than those with a low-PRS. The following variables were related to an increased thyroid cancer risk; female (OR = 4.21), high white blood cell count (OR = 4.03), and high energy (OR = 7.00), low alcohol (OR = 4.11), and high seaweed (OR = 4.02) intakes. These variables also interacted with PRS to influence thyroid cancer risk. Meat/noodle diet patterns interacted with PRSs to increase thyroid cancer risk (p = 0.0023). In conclusion, women with a high-PRS associated with cell differentiation and inflammation were at an elevated thyroid cancer risk. Daily energy, seaweeds, and alcohol intake interacted with PRS for thyroid cancer risk. These results could be applied to personalized nutrition plans to reduce the risk of thyroid cancer.

8.
Nutrients ; 12(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213085

RESUMEN

Age-related cataract (ARC) development is associated with loss of crystalline lens transparency related to interactions between genetic and environmental factors. We hypothesized that polygenetic risk scores (PRS) of the selected genetic variants among the ARC-related genes might reveal significant genetic impacts on ARC risk, and the PRS might have gene-gene and gene-lifestyle interactions. We examined the hypothesis in 1972 and 39,095 subjects aged ≥50 years with and without ARC, respectively, in a large-scale hospital-based cohort study conducted from 2004 to 2013. Single nucleotide polymorphisms (SNPs) of the genes related to ARC risk were identified, and polygenetic risk scores (PRS) were generated based on the results of a generalized multifactor dimensionality reduction analysis. Lifestyle interactions with PRS were evaluated. The PRS derived from the best model included the following six SNPs related to crystallin metabolism: ULK4_rs1417380362, CRYAB_rs2070894, ACCN1_rs55785344, SSTR2_rs879419608, PTN_rs322348, and ICA1_rs200053781. The risk of ARC in the high-PRS group was 2.47-fold higher than in the low-PRS group after adjusting for confounders. Age, blood pressure, and glycemia interacted with PRS to influence the risk of ARC: the incidence of ARC was much higher in the elderly (≥65 years) and individuals with hypertension or hyperglycemia. The impact of PRS on ARC risk was greatest in middle-aged individuals with hypertension or hyperglycemia. Na, coffee, and a Western-style diet intake also interacted with PRS to influence ARC risk. ARC risk was higher in the high-PRS group than in the low-PRS group, and high Na intake, Western-style diet, and low coffee intake elevated its risk. In conclusion, ARC risk had a positive association with PRS related to crystallin metabolism. The genetic impact was greatest among those with high Na intake or hypertension. These results can be applied to precision nutrition interventions to prevent ARC.


Asunto(s)
Envejecimiento , Catarata/genética , Catarata/metabolismo , Cristalinas/metabolismo , Predisposición Genética a la Enfermedad/etiología , Anciano , Estudios de Cohortes , Dieta Occidental/efectos adversos , Femenino , Humanos , Hiperglucemia/complicaciones , Hipertensión/complicaciones , Incidencia , Estilo de Vida , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , República de Corea , Medición de Riesgo , Factores de Riesgo , Sodio/administración & dosificación
9.
Nutrients ; 12(11)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114701

RESUMEN

Glaucoma, a leading cause of blindness, has multifactorial causes, including environmental and genetic factors. We evaluated genetic risk factors of glaucoma with gene-gene interaction and explored modifications of genetic risk with gene-lifestyles interaction in adults >40 years. The present study included 377 subjects with glaucoma and 47,820 subjects without glaucoma in a large-scale hospital-based cohort study from 2004 to 2013. The presence of glaucoma was evaluated by a diagnostic questionnaire evaluated by a doctor. The genome-wide association study was performed to identify genetic variants associated with glaucoma risk. Food intake was assessed using a semiquantitative food frequency questionnaire. We performed generalized multifactor dimensionality reduction analysis to construct polygenetic-risk score (PRS) and explored gene × nutrient interaction. PRS of the best model included LIM-domain binding protein-2 (LDB2) rs3763969, cyclin-dependent kinase inhibitor 2B (CDKN2B) rs523096, ABO rs2073823, phosphodiesterase-3A (PDE3A) rs12314390, and cadherin 13 (CDH13) rs12449180. Glaucoma risk in the high-PRS group was 3.02 times that in the low-PRS group after adjusting for confounding variables. For those with low serum glucose levels (<126 mg/dL), but not for those with high serum glucose levels, glaucoma risk in the high-PRS group was 3.16 times that in the low-PRS group. In those with high carbohydrate intakes (≥70%), but not in those with low carbohydrate intakes, glaucoma risk was 3.74 times higher in the high-PRS group than in the low-PRS group. The glaucoma risk was 3.87 times higher in the high-PRS group than in the low-PRS group only in a low balanced diet intake. In conclusion, glaucoma risk increased by three-fold in adults with a high PRS, and it can be reduced by good control of serum glucose concentrations and blood pressure (BP) with a balanced diet intake. These results can be applied to precision nutrition to reduce glaucoma risk.


Asunto(s)
Glucemia/análisis , Presión Sanguínea , Carbohidratos de la Dieta/análisis , Predisposición Genética a la Enfermedad/etiología , Glaucoma/genética , Sistema del Grupo Sanguíneo ABO/genética , Adulto , Anciano , Cadherinas/genética , Estudios de Cohortes , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Dieta/efectos adversos , Encuestas sobre Dietas , Femenino , Galactosiltransferasas/genética , Estudio de Asociación del Genoma Completo , Control Glucémico/estadística & datos numéricos , Humanos , Proteínas con Dominio LIM/genética , Masculino , Persona de Mediana Edad , Fenómenos Fisiológicos de la Nutrición/genética , Polimorfismo de Nucleótido Simple , República de Corea , Medición de Riesgo , Factores de Riesgo , Factores de Transcripción/genética
10.
Pharmaceutics ; 12(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751987

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease that may be related to gut microbes. Schizonepeta Tenuifolia Briquet (STB) and Alpinia Oxyphylla Miquel (AOM) has traditionally been used for anti-inflammatory activity. We evaluated the effects of STB, AOM and STB+AOM extracts on 2,4-dinitro-1-chlorobenzene (DNCB)-induced AD skin lesions in Nc/Nga mice and action mechanism was explored. AD lesions were induced in the dorsal skin of Nc/Nga mice by topical application of 1% followed by 0.2% DNCB. After DNCB was applied, the mice had topical applications of either 30% water, 0.01% dexamethasone, 30% STB, 30% AOM, 15% STB + 15% AOM extracts in butylene glycol (BG). Each group was also fed corresponding high-fat diets with 1% dextrin (AD-Con and AD-Positive), 1% STB (AD-STB), 1% AOM (AD-AOM) and 0.5% STB + 0.5% (AD-MIX). Normal-control mice had no DNCB application. The study evaluated the skin AD severity, scratching behavior and weight changes of AD mice for 5 weeks. Compared with AD-Con, AD-STB, AD-AOM and AD-MIX alleviated the clinical AD symptoms (erythema, pruritus, edema, erosion and lichenification and scratching behaviors), normalized immune chemistry (serum IgE concentration, mast cells and eosinophil infiltration), improved skin hyperplasia and enhanced the gut microbiome. AD-STB, AD-AOM, AD-MIX and AD-positive treatments inhibited cutaneous mRNA expression of TNF-α, IL-4 and IL-13 and serum IgE concentrations. AD-MIX most effectively reduced clinical AD symptoms and proinflammatory cytokines. AD-Positive also reduced them but serum GOT and GPT concentrations were abnormally high. AD-STB and AD-MIX increased the alpha-diversity of fecal bacteria and reduced the serum acetate concentration, compared to the AD-Con. In conclusion, the mixture of STB and AOM is effective for treating AD symptoms locally and systemically without adverse effects and are potential interventions for atopic dermatitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...