Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(1): 457-463, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643520

RESUMEN

The wafer-scale single-crystal GaN film was transferred from a commercial bulk GaN wafer onto a Si (100) substrate by combining ion-cut and surface-activated bonding. Well-defined, uniformly thick, and large-scale wafer size ReS2 multilayers were grown on the GaN substrate. Finally, ReS2 photodetectors were fabricated on GaN and sapphire substrates, respectively, and their performances were compared. Due to the polarization effect of GaN, the ReS2/GaN photodetector showed better performance. The ReS2/GaN photodetector has a responsivity of 40.12 A/W, while ReS2/sapphire has a responsivity of 0.17 A/W. In addition, the ReS2/GaN photodetector properties have reached an excellent reasonable level, including a photoconductive gain of 447.30, noise-equivalent power of 1.80 × 10-14 W/Hz1/2, and detectivity of 1.21 × 1010 Jones. This study expands the way to enhance the performance of ReS2 photodetectors.

2.
ACS Omega ; 7(51): 48301-48309, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591144

RESUMEN

Two-dimensional layered materials have attracted tremendous attention as photodetectors due to their fascinating features, including comprehensive coverage of band gaps, high potential in new-generation electronic devices, mechanical flexibility, and sensitive light-mass interaction. Currently, graphene and transition-metal dichalcogenides (TMDCs) are the most attractive active materials for constructing photodetectors. A growing number of emerging TMDCs applied in photodetectors bring up opportunities in the direct band gap independence with thickness. This study demonstrated for the first time a photodetector based on a few-layer Re x Mo1-x S2, which was grown by chemical vapor deposition (CVD) under atmospheric pressure. The detailed material characterizations were performed using Raman spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy (XPS) on an as-grown few-layer Re x Mo1-x S2. The results show that both MoS2 and ReS2 peaks appear in the Re x Mo1-x S2 Raman diagram. Re x Mo1-x S2 is observed to emit light at a wavelength of 716.8 nm. The electronic band structure of the few layers of Re x Mo1-x S2 calculated using the first-principles theory suggests that the band gap of Re x Mo1-x S2 is larger than that of ReS2 and smaller than that of MoS2, which is consistent with the photoluminescence results. The thermal stability of the few layers of Re x Mo1-x S2 was evaluated using Raman temperature measurements. It is found that the thermal stability of Re x Mo1-x S2 is close to those of pure ReS2 and MoS2. The fabricated Re x Mo1-x S2 photodetector shows a high response rate of 7.46 A W-1 under 365 nm illumination, offering a competitive performance to the devices based on TMDCs and graphenes. This study unambiguously distinguishes Re x Mo1-x S2 as a future candidate in electronics and optoelectronics.

3.
Nanoscale ; 11(21): 10546-10554, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31116212

RESUMEN

With rapid developments in the consumer electronics market, electrostatic capacitors need to store as much energy as possible within a rather restricted space. In this work, nanocomposite films combining two-dimensional core-shell NaNbO3@Al2O3 platelets (2D NN@AO Ps) and poly(vinylidene-fluoride hexafluoropropylene) (P(VDF-HFP)), featuring excellent energy storage capability, high efficiency, and ultrafast discharge performance, are designed and fabricated. Both the experimental results and finite element simulations confirm the superiority of these 2D NN@AO Ps nanocomposite films in improving the breakdown strength (Eb) and energy storage capability. In particular, the introduction of 3 vol% 2D NN@AO Ps results in much enhanced discharge energy density of 14.59 J cm-3 and outstanding discharge efficiency of 70.1% in NN@AO Ps/P(VDF-HFP) nanocomposite films, which is much greater than that of pure P(VDF-HFP) (7.74 J cm-3). The corresponding nanocomposite films exhibit excellent reliability in energy storage performance under consecutive cycling. Therefore, this research could reveal a new chapter in the study and application of polymer nanocomposites in energy-storage dielectric capacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...