Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Oral Microbiol ; 16(1): 2345942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756148

RESUMEN

Objective: To investigate the associations of the oral microbiome status with diabetes characteristics in elderly patients with type 2 diabetes mellitus. Methods: A questionnaire was used to assess age, sex, smoking status, drinking status, flossing frequency, T2DM duration and complications, and a blood test was used to determine the glycated haemoglobin (HbA1c) level. Sequencing of the V3-V4 region of the 16S rRNA gene from saliva samples was used to analyze the oral microbiome. Results: Differential analysis revealed that Streptococcus and Weissella were significantly enriched in the late-stage group, and Capnocytophaga was significantly enriched in the early-stage group. Correlation analysis revealed that diabetes duration was positively correlated with the abundance of Streptococcus (r= 0.369, p= 0.007) and negatively correlated with the abundance of Cardiobacterium (r= -0.337, p= 0.014), and the level of HbA1c was not significantly correlated with the oral microbiome. Network analysis suggested that the poor control group had a more complex microbial network than the control group, a pattern that was similar for diabetes duration. In addition, Streptococcus has a low correlation with other microorganisms. Conclusion: In elderly individuals, Streptococcus emerges as a potential biomarker linked to diabetes, exhibiting elevated abundance in diabetic patients influenced by disease exposure and limited bacterial interactions.

2.
Acta Pharmacol Sin ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565961

RESUMEN

Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 µM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.

3.
Cardiovasc Res ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626254

RESUMEN

AIM: The activation of Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in endothelial cells (ECs) contributes to vascular inflammation in atherosclerosis. Considering the high glycolytic rate of ECs, we delineated whether and how glycolysis determines endothelial NLRP3 inflammasome activation in atherosclerosis. METHODS AND RESULTS: Our results demonstrated a significant upregulation of 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3), a key regulator of glycolysis, in human and mouse atherosclerotic endothelium, which positively correlated with NLRP3 levels. Atherosclerotic stimuli upregulated endothelial PFKFB3 expression via sterol regulatory element binding protein 2 (SREBP2) transactivation. EC-selective haplodeficiency of Pfkfb3 in Apoe-/- mice resulted in reduced endothelial NLRP3 inflammasome activation and attenuation of atherogenesis. Mechanistic investigations revealed that PFKFB3-driven glycolysis increased the NADH content and induced oligomerization of C-terminal binding protein 1 (CtBP1), an NADH-sensitive transcriptional co-repressor. The monomer form, but not the oligomer form, of CtBP1 was found to associate with the transcriptional repressor Forkhead box P1 (FOXP1) and acted as a transrepressor of inflammasome components, including NLRP3, caspase-1, and interleukin-1ß (IL-1ß). Interfering with NADH-induced CtBP1 oligomerization restored its binding to FOXP1 and inhibited the glycolysis-dependent upregulation of NLRP3, Caspase-1, and IL-1ß. Additionally, EC-specific overexpression of NADH-insensitive CtBP1 alleviates atherosclerosis. CONCLUSIONS: Our findings highlight the existence of a glycolysis-dependent NADH/CtBP/FOXP1-transrepression pathway that regulates endothelial NLRP3 inflammasome activation in atherogenesis. This pathway represents a potential target for selective PFKFB3 inhibitors or strategies aimed at disrupting CtBP1 oligomerization to modulate atherosclerosis.

4.
Chemosphere ; 357: 142030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626814

RESUMEN

Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.


Asunto(s)
Reproducción , Masculino , Humanos , Reproducción/efectos de la radiación , Reproducción/efectos de los fármacos , Infertilidad Masculina/prevención & control , Infertilidad Masculina/etiología , Genitales Masculinos/efectos de la radiación , Animales
5.
Colloids Surf B Biointerfaces ; 237: 113834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479259

RESUMEN

Precise diagnosis of complex and soft tumors is challenging, which limits appropriate treatment options to achieve desired therapeutic outcomes. However, multifunctional nano-sized contrast enhancement agents based on nanoparticles improve the diagnosis accuracy of various diseases such as cancer. Herein, a facile manganese-hafnium nanocomposites (Mn3O4-HfO2 NCs) system was designed for bimodal magnetic resonance imaging (MRI)/computed tomography (CT) contrast enhancement with a complimentary function of photodynamic therapy. The solvothermal method was used to fabricate NCs, and the average size of Mn3O4 NPs and Mn3O4-HfO2 NCs was about 7 nm and 15 nm, respectively, as estimated by TEM. Dynamic light scattering results showed good dispersion and high negative (-33 eV) zeta potential, indicating excellent stability in an aqueous medium. Mn3O4-HfO2 NCs revealed negligible toxic effects on the NCTC clone 929 (L929) and mouse colon cancer cell line (CT26), demonstrating promising biocompatibility. The synthesized Mn3O4-HfO2 NCs exhibit significant enhancement in T1-weighted magnetic resonance imaging (MRI) and X-ray computed tomography (CT), indicating the appropriateness for dual-modal MRI/CT molecular imaging probes. Moreover, ultra-small Mn3O4-HfO2 NCs show good relaxivities for MRI/CT. These nanoprobes Mn3O4-HfO2 NCs further possessed outstanding reactive oxygen species (ROS) generation ability under minute ultraviolet light (6 mW·cm-2) to ablate the colon cancer cells in vitro. Therefore, the designed multifunctional Mn3O4-HfO2 NCs were ideal candidates for cancer diagnosis and photodynamic therapy.


Asunto(s)
Neoplasias del Colon , Nanocompuestos , Nanopartículas , Fotoquimioterapia , Ratones , Animales , Manganeso , Hafnio , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/tratamiento farmacológico
6.
Acta Biomater ; 177: 431-443, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307478

RESUMEN

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Animales , Terapia Fototérmica , Catálisis , Glucosa , Glucosa Oxidasa , Neoplasias/terapia , Línea Celular Tumoral , Microambiente Tumoral
8.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960633

RESUMEN

The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5-10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanomedicina , Sistemas de Liberación de Medicamentos , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
9.
Int J Nurs Stud ; 148: 104613, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839306

RESUMEN

BACKGROUND: Compassion fatigue is a syndrome resulting from long-term work-related traumatic event stress exposure of medical staff. The emergency department is considered to be a high-risk, high-intensity and high-stress work environment, with a high prevalence of trauma and violence. Nurses in the emergency department are more prone to compassion fatigue than nurses in other departments. Compassion fatigue not only affects the physical and mental health, and job satisfaction of emergency department nurses, but also causes serious consequences for patients, such as poor patient outcome, medical errors, and increased patient mortality during hospitalization. OBJECTIVES: Our study aims to develop and evaluate a predictive model for compassion fatigue among emergency department nurses. DESIGN: A cross-sectional study. DATA SOURCES: The emergency department nurses (N = 1014) were recruited from 21 tertiary hospitals (from Chengdu, Chongqing, Guiyang, Guangzhou and Shanghai) in central, southwestern, southern, and eastern China from July 25, 2022 to October 30, 2022. METHODS: Univariate and multiple logistic regression analyses were used to determine the potential predictive factors associated with compassion fatigue in emergency department nurses. A nomogram was built based on the predictive factors and internally evaluated using a bootstrap resampling method (1000 bootstrap resamples). The performance of the predictive model was evaluated by measuring the Hosmer-Lemeshow goodness of fit test and calibration curve. RESULTS: The prevalence of compassion fatigue among emergency department nurses was 75.9 %. The multiple logistic regression analysis revealed that the independent predictive factors for compassion fatigue among emergency department nurses were working position, job satisfaction, diet habit, sleep hours per day, occupational stress, physical harassment and the level of workplace violence, all of which were identified to create the nomogram. The Hosmer-Lemeshow goodness of fit test indicated that the predictive model was well calibrated (χ2 = 11.520, P = 0.174). The bootstrap-corrected concordance index of nomogram was 0.821 (95 % CI: 0.791-0.851). The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities. CONCLUSIONS: A predictive model of compassion fatigue among emergency department nurses has been developed, based on the general demographic, work-related and lifestyle characteristics, occupational stress, and workplace violence, with satisfactory predictive ability. This model can identify emergency department nurses who are at high risk of compassion fatigue. Our study provides an empirical basis for early detection, early diagnosis and early intervention of emergency department nurses at high risk of compassion fatigue.


Asunto(s)
Agotamiento Profesional , Desgaste por Empatía , Enfermeras y Enfermeros , Estrés Laboral , Humanos , Desgaste por Empatía/epidemiología , Desgaste por Empatía/psicología , Estudios Transversales , China/epidemiología , Encuestas y Cuestionarios , Servicio de Urgencia en Hospital , Satisfacción en el Trabajo , Calidad de Vida , Empatía
10.
J Toxicol Sci ; 48(10): 535-546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778982

RESUMEN

The accumulation of excessively high manganese levels within the brain can contribute to a series of Parkinsonian symptoms referred to as manganism. The gasoline antiknock additive Methylcyclopentadienyl Manganese Tricarbonyl (MMT) is an environmental source of manganese exposure and can induce manganism in rats. While some prior reports have demonstrated the differential expression of small noncoding RNAs (sncRNAs) in patients with Parkinson's disease (PD), the degree of sncRNA dysfunction in manganism has yet to be clearly documented. As sncRNAs such as transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) exhibit high levels of modifications such as 3' terminal 3'-phosphate and 2',3'-cyclic phosphate modifications that disrupt the process of adapter ligation and m1A, m3C, m1G, and m22G RNA methylation, these transcripts are not detected in traditional small RNA-sequencing studies. Here, differential sncRNA expression was analyzed by comparing a rat model of MMT-induced unrepaired striatum damage to appropriate control samples via PANDORA-Seq, which can detect highly modified sncRNAs. Following the removal of sncRNA modifications, this approach identified 599 sncRNAs that were differentially expressed in the striatum of MMT-exposed rats relative to controls, as well as 1155 sncRNAs that were differentially expressed in Mn-treated and control rats. Additional functional analyses were performed to predict the putative targets of these sncRNAs, implicating a role for such sncRNA dysregulation in the pathogenesis of manganism in this rat model system.


Asunto(s)
Intoxicación por Manganeso , ARN Pequeño no Traducido , Humanos , Animales , Ratas , ARN Pequeño no Traducido/genética , Manganeso/toxicidad , Encéfalo , Fosfatos
11.
J Control Release ; 362: 468-478, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666304

RESUMEN

Psoriasis is a multifactorial immuno-inflammatory skin disease, characterized by keratinocyte hyperproliferation and aberrant immune activation. Although the pathogenesis is complex, the interactions among inflammation, Th17-mediated immune activation, and keratinocyte hyperplasia are considered to play a crucial role in the occurrence and development of psoriasis. Therefore, pharmacological interventions on the "inflammation-Th17-keratinocyte" vicious cycle may be a potential strategy for psoriasis treatment. In this study, JPH203 (a specific inhibitor of LAT1, which engulfs leucine to activate mTOR signaling)-loaded, ultraviolet B (UVB) radiation-induced, keratinocyte-derived extracellular vesicles (J@EV) were prepared for psoriasis therapy. The EVs led to increased interleukin 1 receptor antagonist (IL-1RA) content due to UVB irradiation, therefore not only acting as a carrier for JPH203 but also functioning through inhibiting the IL-1-mediated inflammation cascade. J@EV effectively restrained the proliferation of inflamed keratinocytes via suppressing mTOR-signaling and NF-κB pathway in vitro. In an imiquimod-induced psoriatic model, J@EV significantly ameliorated the related symptoms as well as suppressed the over-activated immune reaction, evidenced by the decreased keratinocyte hyperplasia, Th17 expansion, and IL17 release. This study shows that J@EV exerts therapeutic efficacy for psoriasis by suppressing LAT1-mTOR involved keratinocyte hyperproliferation and Th17 expansion, as well as inhibiting IL-1-NF-κB mediated inflammation, representing a novel and promising strategy for psoriasis therapy.

12.
Front Oncol ; 13: 1090860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845697

RESUMEN

Background: It has been reported that ING3 inhibits the progression of various cancers. However, some studies have shown that it promotes the development of prostate cancer. The purpose of this study was to investigate whether ING3 expression is associated with the prognosis of patients with cancer. Materials and methods: PubMed, Cochrane Database, Embase, Medline, ScienceDirect, Scopus and Web of Science were searched until September 2022. The hazard ratio (HR)/odds ratio (OR) and 95% confidence interval (95% CI) were calculated using Stata 17 software. We used the Newcastle-Ottawa Scale (NOS) to assess the risk of bias. Result: Seven studies involving 2371 patients with five types of cancer were included. The results showed that high expression of ING3 was negatively associated with a more advanced TNM stage (III-IV vs. I-II) (OR=0.61, 95% CI: 0.43-0.86), lymph node metastasis (OR=0.67, 95% CI: 0.49-0.90) and disease-free survival (HR=0.63, 95% CI: 0.37-0.88). However, ING3 expression was not associated with overall survival (HR=0.77, 95% CI: 0.41-1.12), tumor size (OR=0.67, 95% CI: 0.33-1.37), tumor differentiation (OR=0.86, 95% CI: 0.36-2.09) and gender (OR=1.14, 95% CI: 0.78-1.66). Conclusion: This study showed that the expression of ING3 was associated with better prognosis, suggesting that ING3 may be a potential biomarker for cancer prognosis. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier (CRD42022306354).

13.
J Pathol ; 259(4): 388-401, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36640260

RESUMEN

Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a dedifferentiated (proliferative) phenotype contributes to neointima formation, which has been demonstrated to possess a tumor-like nature. Dysregulated glucose and lipid metabolism is recognized as a hallmark of tumors but has not thoroughly been elucidated in neointima formation. Here, we investigated the cooperative role of glycolysis and fatty acid synthesis in vascular injury-induced VSMC dedifferentiation and neointima formation. We found that the expression of hypoxia-inducible factor-1α (HIF-1α) and its target 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), a critical glycolytic enzyme, were induced in the neointimal VSMCs of human stenotic carotid arteries and wire-injured mouse carotid arteries. HIF-1α overexpression led to elevated glycolysis and resulted in a decreased contractile phenotype while promoting VSMC proliferation and activation of the mechanistic target of rapamycin complex 1 (mTORC1). Conversely, silencing Pfkfb3 had the opposite effects. Mechanistic studies demonstrated that glycolysis generates acetyl coenzyme A to fuel de novo fatty acid synthesis and mTORC1 activation. Whole-transcriptome sequencing analysis confirmed the increased expression of PFKFB3 and fatty acid synthetase (FASN) in dedifferentiated VSMCs. More importantly, FASN upregulation was observed in neointimal VSMCs of human stenotic carotid arteries. Finally, interfering with PFKFB3 or FASN suppressed vascular injury-induced mTORC1 activation, VSMC dedifferentiation, and neointima formation. Together, this study demonstrated that PFKFB3-mediated glycolytic reprogramming and FASN-mediated lipid metabolic reprogramming are distinctive features of VSMC phenotypic switching and could be potential therapeutic targets for treating vascular diseases with neointima formation. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Humanos , Animales , Hiperplasia/patología , Músculo Liso Vascular/patología , Proliferación Celular , Neointima/patología , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fenotipo , Ácidos Grasos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Miocitos del Músculo Liso/patología
14.
Adv Healthc Mater ; 12(13): e2203397, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690435

RESUMEN

Psoriasis is an immune-mediated chronic inflammatory skin disorder characterized by epidermal hyperplasia and infiltration of inflammatory cells. Even though the pathogenesis remains unclear, T helper 17 (Th17) cells-mediated inflammation and keratinocyte-involved proliferation are considered to play key roles during the occurrence and the development of psoriasis. Therefore, suppressing the infiltration/function of Th17 and the abnormal hyperplasia of keratinocytes can be a rational strategy for ameliorating and treating psoriasis. In this study, a self-assembly nanoparticle (BVn) is developed with bilirubin (an endogenous antioxidant) and V9302 (a blocker of ASCT2, an amino acid transporter mediating glutamine influx for providing energy and activating mammalian target of rapamycin [mTOR] pathway) to intervene the local metabolism and alleviate oxidative stress for psoriasis treatment. BVn effectively suppresses inflammatory keratinocyte proliferation and scavenges excess reactive oxygen species (ROS). In the in vivo psoriasis mouse model, BVn shows increased permeation and delayed retention in the psoriatic lesion and reverses the psoriasis-related symptoms, evidenced by the normalized keratinocyte condition and decreased Th17 infiltration/activation. Mechanism study indicates that BVn not only cut off the energy supply but also suppressed cell proliferation or lymph cell expansion by deactivating mTOR pathway, besides alleviated oxidative stress. BVn-based glutamine metabolism modulation strategy offers a promising strategy for psoriasis therapy.


Asunto(s)
Nanopartículas , Psoriasis , Ratones , Animales , Glutamina/metabolismo , Bilirrubina/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patología , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Psoriasis/patología , Queratinocitos/metabolismo , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
15.
Front Public Health ; 10: 1021104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388333

RESUMEN

Background and aims: Along with an aging population, exploring the impact of oral health on holistic health and determining exact outcomes in elderly individuals are important in both scientific research and clinical practice. Significant increase in the number of systematic reviews shows that oral health can directly or indirectly affect the overall health of elderly people physically, mentally and socially. To systematically collate, appraise, and synthesize the current evidence, we carried out an umbrella review of the impacts of oral health on holistic health in elderly individuals. Methods: A systematic reviews and meta-analyses search was performed in the major databases PubMed, MEDLINE, Web of Science and the Cochrane Library from inception to February 1, 2022, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The JBI (Joanna Briggs Institute) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses was referred to assess methodological quality, and the GRADE (Grading of Recommendations, assessment, Development, and Evaluation working group classification) was used to assess the quality of evidence for each outcome included in the umbrella review. Results: Out of 1,067 records, a total of 35 systematic reviews were included. Respiratory diseases, malnutrition, age-related oral changes, frailty, cognitive impairment, depression and poor quality of life were identified as seven key outcomes that affect the physical, mental and social health of elderly individuals. Meanwhile, three intervention measures of oral health were summarized as (i) more rigorous and universal scales, (ii) dental cleaning and denture installation, and (iii) improving self-awareness regarding oral care. Conclusions: Evidence showed that oral health can significantly affect holistic health, and the diverse oral diseases directly lead to multiple health outcomes in elderly individuals. Clear high-quality evidence revealed that oral health is strongly associated with seven health outcomes covering physical, mental, and social levels, which directly corresponds to holistic health, and impacts the quality of life of elderly individuals. Such the results remind the importance of oral care in public health, and further studies need to be conducted to verity more specific association between oral health and other chronic diseases. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD42022315315.


Asunto(s)
Salud Holística , Salud Bucal , Anciano , Humanos , Metaanálisis como Asunto , Salud Pública , Calidad de Vida , Informe de Investigación , Revisiones Sistemáticas como Asunto
16.
Pharmaceutics ; 14(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36297422

RESUMEN

Omeprazole is commonly prescribed to obese patients and patients after laparoscopic sleeve gastrectomy (LSG). The pharmacokinetics of oral omeprazole after LSG are still unknown. Therefore, the aim of this study was to investigate the pharmacokinetics of oral omeprazole in obese patients before and after LSG. A total of 331 blood samples were collected from 62 obese patients preoperatively (visit 1) followed by 41 patients 7 days post-LSG (visit 2) and 20 patients 1 month post-LSG (visit 3). Population pharmacokinetic analysis was performed using NONMEM to characterize the effect of LSG on omeprazole absorption and disposition. A one-compartment model with 12 transit absorption compartments and linear elimination successfully described the data. Compared with pre-surgery, the oral omeprazole time to maximum plasma concentration (Tmax) was reduced and maximum plasma concentration (Cmax) was higher, but the apparent clearance (CL/F) and area under the plasma concentration-time curve (AUC) were unchanged 7 days and 1 month after surgery. In addition, the CYP2C19 genotype and liver function exhibited a significant influence on omeprazole CL/F. LSG increased the rate of omeprazole absorption but did not affect omeprazole exposure. A dose of 20 mg omeprazole once daily may be adequate for relieving gastrointestinal tract discomfort at short-term follow-up post-LSG.

17.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298409

RESUMEN

Unmanned aerial vehicles (UAVs) are widely used in wireless communication systems due to their flexible mobility and high maneuverability. The combination of UAVs and mobile edge computing (MEC) is regarded as a promising technology to provide high-quality computing services for latency-sensitive applications. In this paper, a novel UAV-assisted MEC uplink maritime communication system is proposed, where an MEC server is equipped on UAV to provide flexible assistance to maritime user. In particular, the task of user can be divided into two parts: one portion is offloaded to UAV and the remaining portion is offloaded to onshore base station for computing. We formulate an optimization problem to minimize the total system latency by designing the optimal flying altitude of UAV and the optimal task allocation ratio. We derive a semi closed-form expression of the optimal flying altitude of UAV and a closed-form expression of the optimal task allocation ratio. Simulation results demonstrate the precision of the theoretical analyses and show some interesting insights.

18.
Front Pharmacol ; 13: 1005348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249756

RESUMEN

Population pharmacokinetic (PopPK) models of posaconazole have been established to promote the precision dosing. However, the performance of these models extrapolated to other centers has not been evaluated. This study aimed to conduct an external evaluation of published posaconazole PopPK models to evaluate their predictive performance. Posaconazole PopPK models screened from the PubMed and MEDLINE databases were evaluated using an external dataset of 213 trough concentration samples collected from 97 patients. Their predictive performance was evaluated by prediction-based diagnosis (prediction error), simulation-based diagnosis (visual predictive check), and Bayesian forecasting. In addition, external cohorts with and without proton pump inhibitor were used to evaluate the models respectively. Ten models suitable for the external dataset were finally included into the study. In prediction-based diagnostics, none of the models met pre-determined criteria for predictive indexes. Only M4, M6, and M10 demonstrated favorable simulations in visual predictive check. The prediction performance of M5, M7, M8, and M9 evaluated using the cohort without proton pump inhibitor showed a significant improvement compared to that evaluated using the whole cohort. Consistent with our expectations, Bayesian forecasting significantly improved the predictive per-formance of the models with two or three prior observations. In general, the applicability of these published posaconazole PopPK models extrapolated to our center was unsatisfactory. Prospective studies combined with therapeutic drug monitoring are needed to establish a PopPK model for posaconazole in the Chinese population to promote individualized dosing.

19.
Drug Des Devel Ther ; 16: 3691-3709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277600

RESUMEN

Posaconazole is often used for the prophylaxis and treatment of invasive fungal infections (IFI). However, intra- and inter-individual differences and drug interactions affect the efficacy and safety of posaconazole. Precision dosing of posaconazole based on the population pharmacokinetic (PopPK) model may assist in making significant clinical decisions. This review aimed to comprehensively summarize the published PopPK models of posaconazole and analyze covariates that significantly influence posaconazole exposure. Articles published until May 2022 for PopPK analysis of posaconazole were searched in PubMed and EMBASE databases. Demographic characteristics, model characteristics, and results of PopPK analysis were extracted from the selected articles. In addition, the steady-state pharmacokinetic profiles of posaconazole were simulated at different covariate levels and dosing regimens. Out of the 13 studies included in our review, nine studies included adults, three included children, and one included both adults and children. All oral administration models were one-compartment models, and all intravenous administration models were two-compartment models. Body weight, proton pump inhibitors, and incidence of diarrhea were found to be important covariates. Clinically, the potential impact of factors such as patient physiopathologic characteristics and comorbid medications on posaconazole pharmacokinetics should be considered. Dose adjustment in combination with TDM or replacement with a tablet or intravenous formulation with higher exposure may be an effective way to ensure drug efficacy as well as to reduce fungal resistance. Meanwhile, published models require further external evaluation to examine extrapolation.


Asunto(s)
Antifúngicos , Inhibidores de la Bomba de Protones , Adulto , Niño , Humanos , Antifúngicos/efectos adversos , Triazoles , Comprimidos
20.
Br J Pharmacol ; 179(21): 4974-4991, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35834356

RESUMEN

BACKGROUND AND PURPOSE: Macrophage-rich atherosclerotic arteries are highly active in glycolysis. PFKFB3, a key glycolytic enzyme, has emerged as a potential therapeutic target in atherosclerosis. Small-molecule inhibitors of PFKFB3, such as 3PO and PFK158, have demonstrated efficacy in hampering atherogenesis in preclinical models. However, genetic studies elucidating the role of Pfkfb3 in atherogenesis need to be conducted to validate pharmacological findings and to unveil potential pharmacological side effects. EXPERIMENTAL APPROACH: Apoe-/- mice with global heterozygous or myeloid cell-specific Pfkfb3 deficiency were fed a Western diet (WD), after which atherosclerosis development was determined. Monocyte subsets in atherosclerotic mice and patients were examined by flow cytometry. Monocyte infiltration was assayed by a Ly6Chi monocyte-specific latex labelling procedure. In situ efferocytosis was assessed on mouse aortic root sections. Additionally, metabolic status, macrophage motility, efferocytosis, and involved mechanisms were analysed in peritoneal macrophages. KEY RESULTS: Global heterozygous or myeloid cell-specific Pfkfb3 deficiency reduced atherogenesis in Apoe-/- mice. Mechanistic studies showed that PFKFB3 controlled the proliferation and infiltration of proinflammatory monocytes. Moreover, PFKFB3 expression was associated with inflammatory monocyte expansion in patients with atherosclerotic coronary artery disease. Surprisingly, homozygous loss of Pfkfb3 impaired macrophage efferocytosis and exacerbated atherosclerosis in Apoe-/- mice. Mechanistically, PFKFB3-driven glycolysis was shown to be essential for actin polymerization, thus aiding the efferocytotic function of macrophages. CONCLUSION AND IMPLICATIONS: Collectively, these findings suggest the existence of a double-edged sword effect of myeloid PFKFB3 on the pathogenesis of atherosclerosis and highlight the need for caution in developing anti-atherosclerotic strategies that target PFKFB3.


Asunto(s)
Aterosclerosis , Monocitos , Actinas/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Biología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Fosfofructoquinasa-2 , Piridinas , Quinolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...