Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Annu Rev Genet ; 57: 157-179, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37552891

RESUMEN

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.


Asunto(s)
Replicación del ADN , Transcripción Genética , Animales , Replicación del ADN/genética , Inestabilidad Genómica/genética , Eucariontes/genética , Daño del ADN/genética , Mamíferos
2.
Front Mol Neurosci ; 16: 1179209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456526

RESUMEN

Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.

3.
Nat Commun ; 13(1): 1740, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365626

RESUMEN

The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.


Asunto(s)
Inestabilidad Genómica , Proteasas Ubiquitina-Específicas , Daño del ADN , Replicación del ADN , Humanos , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
4.
EMBO Rep ; 23(2): e53543, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34842321

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Herpesvirus Humano 1 , Neuronas/virología , Activación Viral , Latencia del Virus , Regulación de la Expresión Génica , Herpesvirus Humano 1/fisiología , Humanos , Hibridación Fluorescente in Situ , Transcriptoma
5.
Cell Rep Med ; 2(9): 100402, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622238

RESUMEN

CCNE1 amplification is an oncogenic driver for many gynecologic cancers and is associated with poor patient outcomes. In this issue, Xu et al.1 identify a combination therapy that is responsive to high CCNE1-copy number ovarian and endometrial cancers using PDX models.


Asunto(s)
Neoplasias Endometriales , Neoplasias Ováricas , Ciclina E , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Humanos , Proteínas Oncogénicas/genética , Neoplasias Ováricas/tratamiento farmacológico
6.
Cell Rep ; 36(13): 109754, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34547223

RESUMEN

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/ultraestructura , SARS-CoV-2/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , COVID-19/genética , COVID-19/metabolismo , Proteasas Similares a la Papaína de Coronavirus/genética , Células HEK293 , Humanos , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Unión Proteica/genética , SARS-CoV-2/metabolismo , Especificidad por Sustrato/genética , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo
7.
Mol Cell ; 81(20): 4243-4257.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34473946

RESUMEN

Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Replicación del ADN , ADN de Neoplasias/biosíntesis , Algoritmos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN de Neoplasias/genética , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Mutación , Fosforilación , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Imagen Individual de Molécula
8.
J Biol Chem ; 297(3): 101049, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375640

RESUMEN

Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.


Asunto(s)
Momento de Replicación del ADN , Proteína FUS de Unión a ARN/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proliferación Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Cinética , Proteína FUS de Unión a ARN/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
9.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256011

RESUMEN

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Asunto(s)
Apoptosis/fisiología , Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HeLa , Humanos , Ubiquitinación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Nat Commun ; 12(1): 2525, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953191

RESUMEN

Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.


Asunto(s)
Replicación del ADN/fisiología , ADN/química , G-Cuádruplex , Imagen Individual de Molécula/métodos , Animales , Biofisica , Línea Celular , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Inestabilidad Genómica , Humanos , Proteínas Recombinantes , Células Sf9
11.
Nat Protoc ; 16(2): 1193-1218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442052

RESUMEN

The ability to monitor DNA replication fork directionality at the genome-wide scale is paramount for a greater understanding of how genetic and environmental perturbations can impact replication dynamics in human cells. Here we describe a detailed protocol for isolating and sequencing Okazaki fragments from asynchronously growing mammalian cells, termed Okazaki fragment sequencing (Ok-seq), for the purpose of quantitatively determining replication initiation and termination frequencies around specific genomic loci by meta-analyses. Briefly, cells are pulsed with 5-ethynyl-2'-deoxyuridine (EdU) to label newly synthesized DNA, and collected for DNA extraction. After size fractionation on a sucrose gradient, Okazaki fragments are concentrated and purified before click chemistry is used to tag the EdU label with a biotin conjugate that is cleavable under mild conditions. Biotinylated Okazaki fragments are then captured on streptavidin beads and ligated to Illumina adapters before library preparation for Illumina sequencing. The use of Ok-seq to interrogate genome-wide replication fork initiation and termination efficiencies can be applied to all unperturbed, asynchronously growing mammalian cells or under conditions of replication stress, and the assay can be performed in less than 2 weeks.


Asunto(s)
Replicación del ADN/fisiología , ADN/análisis , Química Clic/métodos , ADN/genética , Replicación del ADN/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Estreptavidina
12.
Front Chem ; 9: 819165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186898

RESUMEN

The emergence of severe acute respiratory syndrome (SARS-CoV-2) in 2019 marked the third occurrence of a highly pathogenic coronavirus in the human population since 2003. As the death toll surpasses 5 million globally and economic losses continue, designing drugs that could curtail infection and disease progression is critical. In the US, three highly effective Food and Drug Administration (FDA)-authorized vaccines are currently available, and Remdesivir is approved for the treatment of hospitalized patients. However, moderate vaccination rates and the sustained evolution of new viral variants necessitate the ongoing search for new antivirals. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation, and suppression of host innate immune responses. Knowledge of inhibitors and assays for viruses were quickly adopted for SARS-CoV-2 protease research. Potential candidates have been identified to show inhibitory effects against PLpro and Mpro, both in biochemical assays and viral replication in cells. These results encourage further optimizations to improve prophylactic and therapeutic efficacy. In this review, we examine the latest developments of potential small-molecule inhibitors and peptide inhibitors for PLpro and Mpro, and how structural biology greatly facilitates this process.

13.
Mol Cell ; 80(4): 682-698.e7, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33152268

RESUMEN

Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Basocelular/patología , Quinasa 2 Dependiente de la Ciclina/metabolismo , ADN Polimerasa II/metabolismo , Inestabilidad Genómica , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Ciclo Celular , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/genética , Daño del ADN , ADN Polimerasa II/genética , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Transducción de Señal , Células Tumorales Cultivadas
14.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067239

RESUMEN

Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.


Asunto(s)
Betacoronavirus/enzimología , Diseño de Fármacos , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Dominio Catalítico , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Inhibidores de Proteasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Especificidad por Sustrato , Ubiquitinas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
15.
DNA Repair (Amst) ; 95: 102948, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866776

RESUMEN

The DNA damage response (DDR) is necessary to maintain genome integrity and prevent the accumulation of oncogenic mutations. Consequently, proteins involved in the DDR often serve as tumor suppressors, carrying out the crucial task of keeping DNA fidelity intact. Mediator of DNA damage checkpoint 1 (MDC1) is a scaffold protein involved in the early steps of the DDR. MDC1 interacts directly with γ-H2AX, the phosphorylated form of H2AX, a commonly used marker for DNA damage. It then propagates the phosphorylation of H2AX by recruiting ATM kinase. While the function of MDC1 in the DDR has been reviewed previously, its role in cancer has not been reviewed, and numerous studies have recently identified a link between MDC1 and carcinogenesis. This includes MDC1 functioning as a tumor suppressor, with its loss serving as a biomarker for cancer and contributor to drug sensitivity. Studies also indicate that MDC1 operates outside of its traditional role in DDR, and functions as a co-regulator of nuclear receptor transcriptional activity, and that mutations in MDC1 are present in tumors and can also cause germline predisposition to cancer. This review will discuss reports that link MDC1 to cancer and identify MDC1 as an important player in tumor formation, progression, and treatment. We also discuss mechanisms by which MDC1 levels are regulated and how this contributes to tumor formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis , Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Transcripción Genética
16.
Chem Sci ; 11(23): 6058-6069, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32953009

RESUMEN

Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin (Ub) from its protein conjugates. DUBs have been implicated as attractive therapeutic targets in the treatment of viral diseases, neurodegenerative disorders and cancer. The lack of selective chemical tools for the exploration of these enzymes significantly impairs the determination of their roles in both normal and pathological states. Commercially available fluorogenic substrates are based on the C-terminal Ub motif or contain Ub coupled to a fluorophore (Z-LRGG-AMC, Ub-AMC); therefore, these substrates suffer from lack of selectivity. By using a hybrid combinatorial substrate library (HyCoSuL) and a defined P2 library containing a wide variety of nonproteinogenic amino acids, we established a full substrate specificity profile for two DUBs-MERS PLpro and human UCH-L3. Based on these results, we designed and synthesized Ub-based substrates and activity-based probes (ABPs) containing selected unnatural amino acids located in the C-terminal Ub motif. Biochemical analysis and cell lysate experiments confirmed the activity and selectivity of engineered Ub-based substrates and probes. Using this approach, we propose that for any protease that recognizes Ub and Ub-like substrates, a highly active and selective unnatural substrate or probe can be engineered.

17.
bioRxiv ; 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32511411

RESUMEN

In December 2019, the first cases of a novel coronavirus infection causing COVID-19 were diagnosed in Wuhan, China. Viral Papain-Like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library containing natural and a wide variety of nonproteinogenic amino acids and performed comprehensive activity profiling of SARS-CoV-2-PLpro. On the scaffold of best hits from positional scanning we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro variants versus other proteases. We determined crystal structures of two of these inhibitors (VIR250 and VIR251) in complex with SARS-CoV-2-PLpro which reveals their inhibitory mechanisms and provides a structural basis for the observed substrate specificity profiles. Lastly, we demonstrate that SARS-CoV-2-PLpro harbors deISGylating activities similar to SARS-CoV-1-PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Altogether this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repositioning.

18.
J Plast Reconstr Aesthet Surg ; 73(10): 1815-1824, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32593571

RESUMEN

BACKGROUND: The management of chronic pulmonary aspergillosis remains a challenge for thoracic and reconstructive surgeons. Different management options have been proposed with no consensus regarding the best treatment modality. The goal of this study is to report our experience with the use of intrathoracic muscle flaps for the management of pulmonary aspergillosis. METHODS: We retrospectively reviewed all patients who underwent intrathoracic muscle flap transposition for the management of pulmonary aspergillosis between 1990 and 2010. Demographics, surgical characteristics, and treatment outcomes were collected and analyzed. RESULTS: A total of 39 patients who underwent 48 muscle flaps were identified. The majority were classified as ASA 3 (n=30, 77%) or ASA 4 (n=8, 21%). Serratus anterior was the most common flap used (n=34), followed by latissimus dorsi (n=6) and pectoralis major (n=5). Flap loss was encountered in three (8%) patients (2 partial, 1 total). Bronchopleural fistula and empyema comprised the two most common intrathoracic complications (26%, 29% respectively). Median follow-up was 33 months (range, 0-216). Successful treatment was achieved in 77% of patients, while operative mortality was 23%. CONCLUSION: The use of intrathoracic muscle flaps can be a helpful adjunct to surgical resection in the treatment of chronic pulmonary aspergillosis with low rates of flap loss.


Asunto(s)
Procedimientos de Cirugía Plástica/métodos , Aspergilosis Pulmonar/cirugía , Colgajos Quirúrgicos , Anciano , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/trasplante , Complicaciones Posoperatorias/epidemiología , Estudios Retrospectivos , Pared Torácica
19.
PLoS Genet ; 16(3): e1008524, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142505

RESUMEN

Common fragile sites (CFSs) are breakage-prone genomic loci, and are considered to be hotspots for genomic rearrangements frequently observed in cancers. Understanding the underlying mechanisms for CFS instability will lead to better insight on cancer etiology. Here we show that Polycomb group proteins BMI1 and RNF2 are suppressors of transcription-replication conflicts (TRCs) and CFS instability. Cells depleted of BMI1 or RNF2 showed slower replication forks and elevated fork stalling. These phenotypes are associated with increase occupancy of RNA Pol II (RNAPII) at CFSs, suggesting that the BMI1-RNF2 complex regulate RNAPII elongation at these fragile regions. Using proximity ligase assays, we showed that depleting BMI1 or RNF2 causes increased associations between RNAPII with EdU-labeled nascent forks and replisomes, suggesting increased TRC incidences. Increased occupancy of a fork protective factor FANCD2 and R-loop resolvase RNH1 at CFSs are observed in RNF2 CRISPR-KO cells, which are consistent with increased transcription-associated replication stress in RNF2-deficient cells. Depleting FANCD2 or FANCI proteins further increased genomic instability and cell death of the RNF2-deficient cells, suggesting that in the absence of RNF2, cells depend on these fork-protective factors for survival. These data suggest that the Polycomb proteins have non-canonical roles in suppressing TRC and preserving genomic integrity.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , Complejo Represivo Polycomb 1/genética , Transcripción Genética/genética , Línea Celular , Línea Celular Tumoral , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Humanos
20.
Methods Mol Biol ; 2060: 263-277, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31617183

RESUMEN

We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal or explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency. As such this model allows for detailed investigations of both viral and neuronal factors involved in the establishment and maintenance of HSV-1 latency and in viral reactivation induced by defined stimuli.


Asunto(s)
Técnicas de Cultivo de Célula , Herpesvirus Humano 1/fisiología , Neuronas , Activación Viral/fisiología , Latencia del Virus/fisiología , Animales , Células Cultivadas , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...