Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 279: 116489, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776781

RESUMEN

Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 µm) exhibited more pronounced combined toxicity than PS-MP (1 µm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.


Asunto(s)
Apoptosis , Retardadores de Llama , Potencial de la Membrana Mitocondrial , Microplásticos , Nanopartículas , Poliestirenos , Especies Reactivas de Oxígeno , Humanos , Células Hep G2 , Poliestirenos/toxicidad , Poliestirenos/química , Nanopartículas/toxicidad , Nanopartículas/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Microplásticos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Organofosfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adsorción , Plásticos/toxicidad
2.
Chemosphere ; 343: 140267, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758090

RESUMEN

Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Compuestos Organofosforados/toxicidad , Oxidación-Reducción , Electrodos
3.
Ecotoxicol Environ Saf ; 263: 115261, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459723

RESUMEN

Biodegradation of triphenyl phosphate (TPHP) by Sphingopyxis sp. GY was investigated, and results demonstrated that TPHP could be completely degraded in 36 h with intracellular enzymes playing a leading role. This study, for the first time, systematically explores the effects of the typical brominated flame retardants, organophosphorus flame retardants, and heavy metals on TPHP degradation. Our findings reveal that TCPs, BDE-47, HBCD, Cd and Cu exhibit inhibitory effects on TPHP degradation. The hydrolysis-, hydroxylated-, monoglucosylated-, methylated products and glutathione (GSH) conjugated derivative were identified and new degradation pathway of TPHP mediated by microorganism was proposed. Moreover, toxicity evaluation experiments indicate a significant reduction in toxicity following treatment with Sphingopyxis sp. GY. To evaluate its potential for environmental remediation, we conducted bioaugmentation experiments using Sphingopyxis sp. GY in a TPHP contaminated water-sediment system, which resulted in excellent remediation efficacy. Twelve intermediate products were detected in the water-sediment system, including the observation of the glutathione (GSH) conjugated derivative, monoglucosylated product, (OH)2-DPHP and CH3-O-DPHP for the first time in microorganism-mediated TPHP transformation. We further identify the active microbial members involved in TPHP degradation within the water-sediment system using metagenomic analysis. Notably, most of these members were found to possess genes related to TPHP degradation. These findings highlight the significant reduction of TPHP achieved through beneficial interactions and cooperation established between the introduced Sphingopyxis sp. GY and the indigenous microbial populations stimulated by the introduced bacteria. Thus, our study provides valuable insights into the mechanisms, co-existed pollutants, transformation pathways, and remediation potential associated with TPHP biodegradation, paving the way for future research and applications in environmental remediation strategies.


Asunto(s)
Retardadores de Llama , Sphingomonadaceae , Retardadores de Llama/metabolismo , Organofosfatos/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Glutatión
4.
Sci Total Environ ; 894: 164823, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343856

RESUMEN

Organophosphorus flame retardants (OPFRs) are now drawing the public's attention due to their potential toxicity. Given that contaminated food may result in the ingestion of OPFRs to the human intestine, further investigation is required to determine the potential adverse effects of these compounds on human intestinal health. The present study aimed to comprehensively assess the effect of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a typical OPFR, on human intestinal health by evaluating both intestinal flora and human cell Caco-2. Based on the results, TDCPP exposure altered the composition of intestinal flora and increased the proportion of pathogenic bacteria. PICRUSt2 analysis revealed that certain pathways were affected by TDCPP, and the resulting metabolic disorders might cause health problems. Orthologous genes of glutathione S-transferase and multidrug efflux system were up-regulated, demonstrating that the bacteria resisted TDCPP to maintain their vitality. Compared to the other two OPFRs, TDCPP induced greater cytotoxicity, and the results were consistent with the dose-effect relationship. Three OPFRs, especially TDCPP, caused the release of lactate dehydrogenase, accumulation of ROS, decline in mitochondrial membrane potential and increase in intracellular Ca2+, which could consequently induce cell death. The simultaneous effects of TDCPP on both intestinal cells and intestinal flora are likely to engender more severe intestinal health issues.


Asunto(s)
Retardadores de Llama , Microbioma Gastrointestinal , Humanos , Fosfatos/toxicidad , Organofosfatos/toxicidad , Organofosfatos/metabolismo , Compuestos Organofosforados/toxicidad , Células CACO-2 , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Intestinos
5.
Sci Total Environ ; 778: 146264, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33725607

RESUMEN

Microplastics (MPs) pollution becomes an emergent threat to the ecosystem, and its joint effect with organic contaminants will cause more severe consequences. Recently, MPs has been observed in human feces, suggesting that we are exposed to an uncertain danger. In this study, the joint effect of polyethylene microplastics particles (PEMPs) and Tetrabromobisphenol A (TBBPA) on human gut was explored through the simulation experiment in vitro with human cell Caco-2 and gut microbiota. The toxicity of TBBPA and PEMPs on Caco-2 human cells was considered by physiological and biochemical indexes such as cell proliferation, cell cycle, reactive oxygen species, lactate dehydrogenase release, and mitochondrial membrane potential. Besides, microbial community diversity, community structure, and function changes of gut microbiota were investigated using Illumina 16S rRNA gene MiSeq sequencing to reveal the influence of TBBPA and PEMPs on human gut microbiota. The results indicated that both PEMPs and TBBPA would deteriorate the status of Caco-2 cells, and TBBPA played a major role in it; meanwhile, PEMPs affected Caco-2 cells at high concentrations. Particularly, TBBPA and PEMPs exhibited a joint effect on Caco-2 cells to a certain degree. TBBPA selectivity inhibited the growth of gram-positive bacteria such as Enterococcus and Lactobacillus, contributing to the thriving of gram-negative bacteria such as Escherichia and Bacteroides. The existence of PEMPs would enhance the proportion of Clostridium, Bacteroides, and Escherichia. Community composition changed dramatically with the interference of PEMPs and TBBPA; this was undesirable to the healthy homeostasis of the human gut. PICRUSt analysis determined both PEMPs and TBBPA interfered with the metabolism pathways of gut microbiota. Hence, the threat of MPs and TBBPA to humans should arouse vigilance.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Células CACO-2 , Humanos , Plásticos , Bifenilos Polibrominados , ARN Ribosómico 16S
6.
Ecotoxicol Environ Saf ; 202: 110919, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800254

RESUMEN

In this study, Pseudomonas aeruginosa was applied to degrade tetrabromobisphenol A (TBBPA) with glucose as a co-metabolic substrate. Influencing factors of co-metabolic degradation such as pH, TBBPA and glucose concentration were examined and the degradation efficiency under optimal condition reached about 50% on the 7th day. The study also proved that the extracellular action, rather than intracellular one, played a leading role in TBBPA degradation. Five metabolites including debromination and beta-scission products were identified in this study. The extracellular active substance pyocyanin was considered as the origin of H2O2 and OH·. The variation of concentrations of H2O2 and OH· shared the same trend, they increased in the early days and then declined gradually. On the 1st day, the OD600 of P.aeruginosa in the co-metabolic group was 6.0 times higher than the initial value while total organic carbon (TOC) decreased about 78%, which might lead to the occurrence of pyocyanin auto-poisoning. Flow cytometry was applied to detect the cellular state of P.aeruginosa during degradation. The increasing intracellular ROS showed that cells were suffering from oxidative stress and the change of membrane potential revealed that cellular dysfunction had occurred since the 1st day. This research indicated that the toxic effect on P.aeruginosa was probably not directly correlated with TBBPA, but was caused by pyocyanin auto-poisoning.


Asunto(s)
Bifenilos Polibrominados/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradación Ambiental , Peróxido de Hidrógeno
7.
Chemosphere ; 249: 126205, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32086068

RESUMEN

Microbial consortium remediation has been considered to be a promising technique for BDE-209 elimination in water, soil and sediment. Herein, we studied malondialdehyde (MDA), membrane potential (MP), and reactive active species (ROS) of a microbial consortium GY1 exposed to BDE-209. The results indicated that the microbial antioxidant defense system was vulnerable by BDE-209. Both early and late apoptosis of microbial consortium induced by BDE-209 were observed. The sequencing results revealed that Stenotrophomonas, Microbacterium and Sphingobacterium in GY1 played major roles in BDE-209 degradation. Moreover, a novel facultative anaerobic BDE-209 degrading strain named Microbacterium Y2 was identified from GY1, by which approximately 56.1% of 1 mg/L BDE-209 was degraded within 7 days, and intracellular enzymes of which contributed great to the result. Overall, the current study provided new insights to deeply understand the mechanisms of BDE-209 degradation by microbial consortium.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Consorcios Microbianos/efectos de los fármacos , Antioxidantes/metabolismo , Biodegradación Ambiental , Éteres Difenilos Halogenados/metabolismo , Malondialdehído/metabolismo , Suelo
8.
Bioresour Technol ; 270: 482-488, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30245318

RESUMEN

A three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) in microbial fuel cell (MFC) in previous studies. This study explored the biodegradation of oxytetracycline (OTC) and electricity generation in O-D-GM-BE MFC. The OTC removal efficiency of graphene modified biocathode and bioanode (O-GM-BC, O-GM-BA) was 95.0% and 91.8% in eight days. The maximum power density generated by O-D-GM-BE MFC was 86.6 ±â€¯5.1 mW m-2, which was 2.1 times of that in OTC control bioelectrode (O-C-BE) MFC. The Rct of O-GM-BA and O-GM-BC were decreased significantly by 78.3% and 76.3%. OTC was biodegraded to monocyclic benzene compounds by bacteria. O-GM-BA was affected strongly by OTC, and Salmonella and Trabulsiella were accounted for 83.0%, while typical exoelectrogens (Geobacter) were still enriched after the maturity of biofilm. In O-GM-BC, bacteria related with OTC biodegradation (Comamonas, Ensifer, Sphingopyxis, Pseudomonas, Dechloromonas, etc.) were enriched, which contributed to the high removal efficiency of OTC.


Asunto(s)
Biodegradación Ambiental , Fuentes de Energía Bioeléctrica/microbiología , Oxitetraciclina/metabolismo , Biopelículas , Electricidad , Geobacter/metabolismo , Grafito/metabolismo
9.
Bioresour Technol ; 241: 220-227, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28570887

RESUMEN

In this work, bacterial community shift and incurred performance of graphene modified bioelectrode (GM-BE) in microbial fuel cell (MFC) were illustrated by high throughput sequencing technology and electrochemical analysis. The results showed that Firmicutes occupied 48.75% in graphene modified bioanode (GM-BA), while Proteobacteria occupied 62.99% in graphene modified biocathode (GM-BC), both were dominant bacteria in phylum level respectively. Typical exoelectrogens, including Geobacter, Clostridium, Pseudomonas, Geothrix and Hydrogenophaga, were counted 26.66% and 17.53% in GM-BA and GM-BC. GM-BE was tended to decrease the bacterial diversity and enrich the dominant species. Because of the enrichment of exoelectrogens and excellent electrical conductivity of graphene, the maximum power density of MFC with GM-BA and GM-BC increased 33.1% and 21.6% respectively, and the transfer resistance decreased 83.8% and 73.6% compared with blank bioelectrode. This study aimed to enrich the microbial study in MFC and broaden the development and application for bioelectrode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Grafito , Bacterias , Electrodos , Geobacter
10.
Bioresour Technol ; 241: 735-742, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28628977

RESUMEN

This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm-2, the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Grafito , Electrodos , Oxidación-Reducción
11.
Bioresour Technol ; 238: 273-280, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28454001

RESUMEN

Dual graphene modified bioelectrode (D-GM-BE) was prepared by in situ microbial-induced reduction of graphene oxide (GO) and polarity reversion in microbial fuel cell (MFC). Next Generation Sequencing technology was used to elucidate bacterial community shift in response to improved performance in D-GM-BE MFC. The results indicated an increase in the relative ratio of Proteobacteria, but a decrease of Firmicutes was observed in graphene modified bioanode (GM-BA); increase of Proteobacteria and Firmicutes were observed in graphene modified biocathode (GM-BC). Genus analysis demonstrated that GM-BE was beneficial to enrich electrogens. Typical exoelectrogens were accounted for 13.02% and 8.83% in GM-BA and GM-BC. Morphology showed that both GM-BA and GM-BC formed 3D-like graphene/biofilm architectures and revealed that the biofilm viability and thickness would decrease to some extent when GM-BE was formed. D-GM-BE MFC obtained the maximum power density by 124.58±6.32mWm-2, which was 2.34 times over C-BE MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Grafito , Electrodos , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...