Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 311, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794602

RESUMEN

The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Colorantes , Polímeros , Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-33513677

RESUMEN

Dissolved organic matter (DOM) is a complex and heterogeneous mixture ubiquitously present in aquatic systems. DOM affects octylphenol (OP) and bisphenol A (BPA) distribution, transport, bioavailability, and toxicity. This study investigated OP and BPA sorption constants, log KCOC, with three size-fractioned DOM. The molecular weights of the sized fractions were low molecular weight DOM (LDOM, <1 kDa), middle molecular weight DOM (MDOM, 1-10 kDa), and high molecular weight DOM (HDOM, 10 kDa-0.45 µm). The log KCOC ranged from 5.34 to 6.14 L/kg-C for OP and from 5.59 to 6.04 L/kg-C for BPA. The OP and BPA log KCOC values were insignificantly different (p = 0.37) and had a strong positive correlation (r = 0.85, p < 0.001). The OP and BPA LDOM log KCOC was significantly higher than the HDOM and MDOM log KCOC (p = 0.012 for BPA, p = 0.023 for OP). The average specific ultraviolet absorption (SUVA254) values were 32.0 ± 5.4, 13.8 ± 1.0, and 17.9 ± 2.8 L/mg-C/m for LDOM, MDOM, and HDOM, respectively. The log KCOC values for both OP and BPA had a moderately positive correlation with the SUVA254 values (r = 0.79-0.84, p < 0.002), which suggested the aromatic group content in the DOM had a positive impact on sorption behavior.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Fluorescencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-31847073

RESUMEN

Phenanthrene (Phe) is a toxin and is ubiquitous in the environment. The sediment humic substances (HS) that bind Phe affect the fate, transport, degradation, and ecotoxicology of Phe. This study investigated Phe sorption constants on size-fractioned HS extracted from river sediment. Fractions were identified as HHS (10 kDa to 0.45 µm), MHS (1-10 kDa), and LHS (<1 kDa). A fluorescence quenching (FQ) method was used to determine the Phe log KHS on size-fractioned HS; the values ranged from 3.97 to 4.68 L/kg-C. The sorption constant (log KHS) is a surrogate of the binding capacity between HS and Phe, where a high log KHS reduces the toxicity and degradation of Phe. The log KHS values on HHS and MHS were significantly higher than the values on LHS (p = 0.015). The SUVA254 values of HHS and MHS were also significantly higher than the LHS value (p = 0.047), while fluorescence index (FI) and S275-295 values were significantly lower than the LHS values (p < 0.005). The HHS and MHS had a higher aromaticity and more terrestrial sources than LHS. The log KHS had a significant correlation with the selected optical indicators (p < 0.002), which suggested that the HS-bound Phe was positively affected by high aromaticity, terrestrial sources, and HS molecular weight. The results demonstrated that optical methods successfully obtained log KHS and the chemical properties of fractioned HS as well as the influenced factors of log KHS. Moreover, even the LHS had a capacity to bind with Phe.


Asunto(s)
Sedimentos Geológicos/análisis , Sustancias Húmicas/análisis , Fenantrenos/química , Contaminantes Químicos del Agua/química , Adsorción , Fluorescencia , Tamaño de la Partícula , Ríos , Taiwán
4.
Sensors (Basel) ; 19(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533366

RESUMEN

: The composition and structure of dissolved organic matter (DOM) are sensitive indicators that guide the water infiltration process in soil. The DOM chemical composition in seepage affects river water quality and changes soil organic matter (SOM). In this lysimeter test study, fluorescence spectra and optical indices were used to examine the interaction between the percolation water (P-W) and leachate water (L-W) DOMs affected by the soil solution (S-S). The L-W DOM had a higher aromaticity (SUVA254), average molecular weight (S275-295) and terrestrial source (fluorescence index (FI)), but fewer autochthonous sources (biological index (BIX)) than the P-W DOM. Organic carbon standardization (OCS) and protein- (PLF), fulvic- (FLF) and humic-like fluorescence (HLF) intensity showed that L-W DOM increased 44%, 55% and 81%, respectively, compared to the P-W DOM. The linear regression slopes between OCS FLF and PLF were 0.62, 1.74 and 1.79 for P-W, L-W and S-S, respectively. The slopes between OCS HLF and PLF were 0.15, 0.58 and 0.64 for P-W, L-W and S-S, respectively. The P-W DOM was in contact with the soil litter layer, where S-S labile lignin phenolic compounds released and dissolved into the L-W DOM. This increased its aromaticity, and extent of humification.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31540224

RESUMEN

Soil humic substances (SHS) are heterogeneous, complex mixtures, whose concentration, chemical composition, and structure affect the transport and distribution of heavy metals. This study investigated the distribution behavior of two heavy metals [cadmium (Cd) and nickel (Ni)] in high molecular weight SHS (HMHS, 1 kDa-0.45 µm) and low molecular weight SHS (LMHS, <1 kDa) extracted from agricultural soils. The HMHS mass fractions were 45.1 ± 19.3%, 17.1 ± 6.7%, and 57.7 ± 18.5% for dissolved organic carbon (DOC), Cd, and Ni, respectively. The metal binding affinity, unit organic carbon binding with heavy metal ratios ([Me]/[DOC]), were between 0.41 ± 0.09 µmol/g-C and 7.29 ± 2.27 µmol/g-C. Cd preferred binding with LMHS (p < 0.001), while Ni preferred binding with HMHS (p < 0.001). The optical indicators SUVA254, SR, and FI were 3.16 ± 1.62 L/mg-C/m, 0.54 ± 0.18 and 1.57 ± 0.15, respectively for HMHS and 2.65 ± 1.25 L/mg-C/m, 0.40 ± 0.17, and 1.68 ± 0.12, respectively for LMHS. The HMHS contained more aromatic and lower FI values than LMHS. Multilinear regression showed a significant positive correlation between the measured predicted [Me]/[DOC] ratios (r = 0.52-0.72, p < 0.001). The results show that the optical indices can distinguish the chemical composition and structure of different size SHS and predict the binding ability of Me-SHS.


Asunto(s)
Cadmio/análisis , Sustancias Húmicas/análisis , Níquel/análisis , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA