Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Gastroenterol ; 30(7): 636-643, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515958

RESUMEN

This editorial comments on an article published in a recent issue of World Journal of Gastroenterology, entitled "Association of low muscle strength with metabolic dysfunction-associated fatty liver disease: A nationwide study". We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD), as well as the mechanisms underlying the correlation and related clinical applications. NAFLD, which is now redefined as MAFLD, is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition, which may contribute to decreased muscle strength. Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/ MAFLD, including insulin resistance, inflammation, sedentary behavior, as well as insufficient vitamin D. Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD. However, studies investigating the relationship between muscle strength and MAFLD are limited. Owing to the shortage of specific medications for NAFLD/MAFLD treatment, early detection is essential. Furthermore, the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy, as well as tailored physical activity.


Asunto(s)
Gastroenterología , Enfermedad del Hígado Graso no Alcohólico , Sarcopenia , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Fuerza Muscular , Ejercicio Físico
2.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887948

RESUMEN

Two-dimensional (2D) bismuth oxyhalides (BiOX) have attracted much attention as potential optoelectronic materials. To explore their application diversity, we herewith systematically investigate the tunable properties of 2D BiOX using first-principles calculations. Their electronic and optical properties can be modulated by changing the number of monolayers, applying strain, and/or varying the halogen composition. The band gap shrinks monotonically and approaches the bulk value, the optical absorption coefficient increases, and the absorption spectrum redshifts as the layer number of 2D BiOX increases. The carrier transport property can be improved by applying tensile strain, and the ability of photocatalytic hydrogen evolution can be obtained by applying compressive strain. General strain engineering will be effective in linearly tuning the band gap of BiOX in a wide strain range. Strain, together with halogen composition variation, can tune the optical absorption spectrum to be on demand in the range from visible to ultraviolet. This suggests that 2D BiOX materials can potentially serve as tunable novel photodetectors, can be used to improve clean energy techniques, and have potential in the field of flexible optoelectronics.

3.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177119

RESUMEN

Constructing two-dimensional (2D) van der Waals (vdW) heterostructures is an effective strategy for tuning and improving the characters of 2D-material-based devices. Four trilayer vdW heterostructures, BP/BP/MoS2, BlueP/BlueP/MoS2, BP/graphene/MoS2 and BlueP/graphene/MoS2, were designed and simulated using the first-principles calculation. Structural stabilities were confirmed for all these heterostructures, indicating their feasibility in fabrication. BP/BP/MoS2 and BlueP/BlueP/MoS2 lowered the bandgaps further, making them suitable for a greater range of applications, with respect to the bilayers BP/MoS2 and BlueP/MoS2, respectively. Their absorption coefficients were remarkably improved in a wide spectrum, suggesting the better performance of photodetectors working in a wide spectrum from mid-wave (short-wave) infrared to violet. In contrast, the bandgaps in BP/graphene/MoS2 and BlueP/graphene/MoS2 were mostly enlarged, with a specific opening of the graphene bandgap in BP/graphene/MoS2, 0.051 eV, which is much larger than usual and beneficial for optoelectronic applications. Accompanying these bandgap increases, BP/graphene/MoS2 and BlueP/graphene/MoS2 exhibit absorption enhancement in the whole infrared, visible to deep ultraviolet or solar blind ultraviolet ranges, implying that these asymmetrically graphene-sandwiched heterostructures are more suitable as graphene-based 2D optoelectronic devices. The proposed 2D trilayer vdW heterostructures are prospective new optoelectronic devices, possessing higher performance than currently available devices.

4.
RSC Adv ; 12(52): 33928-33935, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36505708

RESUMEN

In this paper, the potential energy curves of 22 Λ-S states as well as 51 Ω states were calculated using the internally contracted multiconfiguration interaction and Davidson correction method. Through the obtained transition data, the spectroscopy data of the low excitation bound state are fitted and compared with the same main group ions. The phenomenon of avoided crossing that occurs in the Ω state is analyzed, and finally it is concluded that this phenomenon mainly occurs in the energy region between 20 000 cm-1 and 40 000 cm-1. The potential laser cooling transition cycle in the Ω state is analyzed. The Franck-Condon factor, radiative lifetime and Einstein coefficient between are calculated. In this paper, we argue that direct laser cooling of SeBr+ is not feasible. The content of our study provides a theoretical basis for subsequent calculations to explore the properties of SeBr+ spectrum.

5.
Materials (Basel) ; 15(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36143525

RESUMEN

Two-dimensional (2D) materials provide a new strategy for developing photodetectors at the nanoscale. The electronic and optical properties of black phosphorus (BP), indium selenide (InSe) monolayer and BP/InSe heterojunction were investigated via first-principles calculations. The geometric characteristic shows that the BP, InSe monolayer and BP/InSe heterojunction have high structural symmetry, and the band gap values are 1.592, 2.139, and 1.136 eV, respectively. The results of band offset, band decomposed charge and electrostatic potential imply that the heterojunction structure can effectively inhibit the recombination of electron--hole pairs, which is beneficial for carrier mobility of photoelectric devices. Moreover, the optical properties, including refractive index, reflectivity, electron energy loss, extinction coefficient, absorption coefficient and photon optical conductivity, show excellent performance. These findings reveal the optimistic application potential for future photoelectric devices. The results of the present study provide new insight into challenges related to the peculiar behavior of the aforementioned materials with applications.

6.
Nanoscale ; 13(45): 18947-18954, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34755746

RESUMEN

Two-dimensional (2D) transition metal di-nitrides (TMN2) have been arousing great interest for their unique mechanic, electronic, optoelectronic, and magnetic properties. The recent successful growth of monolayer MSi2N4 (M = Mo and W) further motivates us to explore new physics and unusual properties behind this family. By using first-principles calculations and Bardeen-Cooper-Schrieffer theory, we predicted the existence of the superconductivity in single-layer (SL) 1T- and 1H-TaN2 with superconducting transition temperatures (Tc) of ∼0.86 and 1.3 K. Specifically, the Tc could be greatly enhanced to ∼24.6 K by passivating the TaN2 monolayer with Si-N bilayers. Furthermore, the superconductivity could be increased to ∼30.4 K via substituting lighter Nb for Ta. This enhancement of superconductivity mainly stems from the softer vibration modes consisting of in-plane Ta/Nb vibrations mixed with Si-xy vibrations. The superconductivity can be further tuned by applying external strains and carrier doping. This enhancement strategy of surface passivation and light atom substitution would suggest a new platform for 2D superconductors and provide an instructive pathway for next-generation nanoelectronics.

7.
J Phys Chem Lett ; 12(32): 7726-7732, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34355906

RESUMEN

Recently, two-dimensional (2D) metal halides have brought out an intensive interest for their unique mechanical, electronic, magnetic, and topological properties. Here, we theoretically report the existence of the single-layer (SL) zirconium dihalide materials ZrX2 (X = Cl, Br, and I) using first-principles calculations. SL ZrX2, which can be obtained from its bulk phase through simple mechanical exfoliation, shows the dynamic, thermodynamic, and mechanical stability. Halogen atoms can effectively tune the electronic structure, dipole moment transition, band alignment, and light absorption. Specifically, ZrX2 monolayers intrinsically exhibit a ferroelasticity with an abnormal 120° orientation rotation, possessing a moderate switching barrier of 24-39 meV/atom. Importantly, we observe superior anisotropic light absorption responses on SL ZrX2 in the visible region. Besides, a series of ZrX2-based excitonic solar cells have been proposed, which hold a large power conversion efficiency limit of 12.4-18.7%.

8.
J Phys Chem Lett ; 12(1): 525-531, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33377387

RESUMEN

Recently, two-dimensional (2D) metal halides have triggered an enormous interest for their tunable mechanical, electronic, magnetic, and topological properties, greatly enriching the family of 2D materials. Here, based on first-principles calculations, we report a systematic study of group 11 transition-metal halide MX (M = Cu, Ag, Au; X = Cl, Br, I) monolayers. Among them, CuBr, CuI, AgBr, and AgI monolayers exhibit high thermodynamic, dynamic, and mechanic stability. The four stable monolayers have a direct band gap of ∼3.12-3.36 eV and possess high carrier mobility (∼103 cm2 V-1 s-1), suggestive of future photocatalysts for water splitting applications. What is more, the simulations of optical properties confirm that the stable MX monolayers hold the potential for further applications in ultraviolet optical devices and quantum cutting solar materials.

9.
Carbohydr Polym ; 247: 116682, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829810

RESUMEN

Diabetic foot ulcer (DFU) is a common high-risk complication in patients with diabetes mellitus, but current drugs and therapies in management of this disease cannot meet the urgent clinical needs. In this study, a snail glycosaminoglycan (SGAG) from the cultured China white jade snail was purified and structurally clarified. This snail glycosaminoglycan is a regular sulfated polysaccharide, composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) with the repeating sequence of →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. The biological assays showed that SGAG had no anticoagulant activity for lacking specific heparin pentasaccharide sequence. The pharmacological experiments suggested that SGAG markedly accelerated the healing of full-thickness wounds in diabetic mice skin. Histologic and immunohistochemical analysis revealed that SGAG treatment alleviated the inflammation and dermal edema, and promoted angiogenesis. This is the first report applying the snail glycosaminoglycan to favor diabetic wound healing.


Asunto(s)
Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacología , Caracoles/química , Acetilglucosamina/química , Actinas/metabolismo , Inductores de la Angiogénesis/aislamiento & purificación , Animales , Antiinflamatorios/aislamiento & purificación , Diabetes Mellitus Experimental , Edema/tratamiento farmacológico , Epitelio/efectos de los fármacos , Epitelio/fisiología , Glicosaminoglicanos/aislamiento & purificación , Heparina/química , Ácido Idurónico/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-8/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Regeneración , Piel/efectos de los fármacos , Piel/patología , Enfermedades de la Piel/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...