Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 468: 133841, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394898

RESUMEN

Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.


Asunto(s)
Chlorella , Diatomeas , Contaminantes Químicos del Agua , Ecosistema , Microplásticos , Plásticos , Cobre , Disponibilidad Biológica , Secuestro de Carbono , Fitoplancton , Poliestirenos
2.
Aquat Toxicol ; 269: 106871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402835

RESUMEN

The negative impacts of polymetallic nodules mining on deep-sea benthic organisms have been widely established, but there is still a lack of understanding of the environmental impact on the surface ocean scenario. Phytoplankton growth experiment was conducted to determine the biological effect of polymetallic nodules on Prorocentrum donghaiense and Skeletonema costatum. The results showed that regardless of concentration and particle size, polymetallic nodules show a promoting effect on P. donghaiense (p < 0.05), the cell density in the experimental group increased by 35.2%-46.5% compared to the control at the end of the experiment. While fine particles significantly inhibited the growth of S. costatum (p < 0.05), the maximum inhibition rate on cell density reached 63.1%. Polymetallic nodules significantly enhance the Fv/Fm and the maximum electron transport rate of photosystem II in P. donghaiense, thereby increasing its growth rate. However, polymetallic nodules particles stimulated the antioxidant activity and extracellular polymeric substances secretion of S. costatum, resulting in phytoplankton flocculation and sedimentation, which inhibits its growth. Thus, these discriminatory impacts may cause alterations in biomass and community structure, ultimately affecting the ecological function.


Asunto(s)
Diatomeas , Dinoflagelados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Fitoplancton , Agua de Mar
3.
Mar Pollut Bull ; 200: 116124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325204

RESUMEN

The combined effects of phosphorus (P) forms and zinc (Zn) concentrations on diatom silicification remain unclear. In this study, we investigate the effects of different Zn concentrations on the growth, cellular silicon content and sinking rate of Thalassiosira weissflogii under different P forms. The results showed that under the dissolved inorganic phosphorus (DIP) treatments, the specific growth rate of T. weissflogii in Zn limitation culture was significantly lower than that in Zn-replete culture. However, T. weissflogii cellular silicon content and sinking rate increased. Moreover, the reduced specific growth rate (7 %, p < 0.05), enhanced ALP activity (63 %, p < 0.05), and sinking rate (20 %, p < 0.05) for Zn-deplete T. weissflogii implied that the bioavailability of dissolved organic phosphorus (DOP) was depressed under Zn deplete medium. This study demonstrates that the physiological ecology and sinking rate of the diatom T. weissflogii were affected by both individual and combined changes in P forms and Zn concentrations.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Zinc , Fósforo/farmacología , Silicio , Ecología
4.
Entropy (Basel) ; 26(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392422

RESUMEN

We investigate the effects of boost invariance breaking on the isotropization of pressure in the glasma, using a 3+1D glasma simulation. The breaking is attributed to spatial fluctuations in the classical color charge density along the collision axis. We present numerical results for pressure and energy density at mid-rapidity and across a wider rapidity region. It is found that, despite varying longitudinal correlation lengths, the behaviors of the pressure isotropizations are qualitatively similar. The numerical results suggest that, in the initial stage, longitudinal color electromagnetic fields develop, similar to those in the boost invariant glasma. Subsequently, these fields evolve into a dilute glasma, expanding longitudinally in a manner akin to a dilute gas. We also show that the energy density at mid-rapidity exhibits a 1/τ decay in the dilute glasma stage.

5.
Chemosphere ; 337: 139308, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37364640

RESUMEN

Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 µg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.


Asunto(s)
Diatomeas , Humanos , Diatomeas/metabolismo , Zinc/metabolismo , Fósforo/metabolismo , Fitoplancton/metabolismo , Metales/metabolismo
6.
Sci Total Environ ; 883: 163812, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37121328

RESUMEN

More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, ß-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.


Asunto(s)
Chlorella , Contaminación por Petróleo , Petróleo , Oligoelementos , Biomasa , Manganeso , Hidrocarburos , Fitoplancton , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Superóxido Dismutasa , Malondialdehído
7.
Quant Imaging Med Surg ; 13(3): 1619-1630, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36915332

RESUMEN

Background: Methods based on the combination of transformer and convolutional neural networks (CNNs) have achieved impressive results in the field of medical image segmentation. However, most of the recently proposed combination segmentation approaches simply treat transformers as auxiliary modules which help to extract long-range information and encode global context into convolutional representations, and there is a lack of investigation on how to optimally combine self-attention with convolution. Methods: We designed a novel transformer block (MRFormer) that combines a multi-head self-attention layer and a residual depthwise convolutional block as the basic unit to deeply integrate both long-range and local spatial information. The MRFormer block was embedded between the encoder and decoder in U-Net at the last two layers. This framework (UMRFormer-Net) was applied to the segmentation of three-dimensional (3D) pancreas, and its ability to effectively capture the characteristic contextual information of the pancreas and surrounding tissues was investigated. Results: Experimental results show that the proposed UMRFormer-Net achieved accuracy in pancreas segmentation that was comparable or superior to that of existing state-of-the-art 3D methods in both the Clinical Proteomic Tumor Analysis Consortium Pancreatic Ductal Adenocarcinoma (CPTAC-PDA) dataset and the public Medical Segmentation Decathlon dataset (self-division). UMRFormer-Net statistically significantly outperformed existing transformer-related methods and state-of-the-art 3D methods (P<0.05, P<0.01, or P<0.001), with a higher Dice coefficient (85.54% and 77.36%, respectively) or a lower 95% Hausdorff distance (4.05 and 8.34 mm, respectively). Conclusions: UMRFormer-Net can obtain more matched and accurate segmentation boundary and region information in pancreas segmentation, thus improving the accuracy of pancreas segmentation. The code is available at https://github.com/supersunshinefk/UMRFormer-Net.

8.
J Environ Manage ; 335: 117456, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822044

RESUMEN

To enhance the nitrogen removal capacity, scrap iron filings and Si-Al porous clay mineral material (PCMW) was used to improve a subsurface wastewater infiltration system (SWIS). The results showed TN and NH4+-N removal efficiencies of improved SWIS were 20.72% and 5.49% higher than those of the control SWIS, respectively. Based on the response of the removal performance, microbial community and function analysis of 16s rRNA amplicon sequencing results, the amending soil matrix substantially enriched the nitrogen removal bacteria (Rhizobiales_Incertae_Sedis and Gemmatimonadaceae), and significantly improved the activities of key enzymes (Hao, NasAB, NarGHI, NirK, NorBC, NirA and NirBD), particularly at co-occurrence zone of nitrification and denitrification (70-130 cm depth). The amending soil matrix not only extended the growth space of microbes, but also provided additional electrons and carbon sources for denitrifying bacteria by regulating the structure and function of the microbial community. In addition, amending soil matrix could enhance phosphate metabolism genes and phosphate solubilizing microbes in the denitrification zone by increasing the phosphorus source, thus strengthening nitrogen metabolism. Nitrospiraceae, Rhizobiales_Incertae_Sedis and Gemmatimonadaceae related to nitrogen removal and Bacillaceae with phosphate-solubilizing ability could be used as microbial indicators of nitrogen removal in SWISs. The reciprocal action of environmental on microbial characteristics exhibited microbial functional were related to DO, Fe2+, TOC, TP, TN, NH4+-N and NO3--N. Those could be used as physicochemical and biological indicators for application and monitoring of SWIS. In conclusion, this study provided a low-cost and efficient enhancement approach for the application of SWIS in decentralized domestic sewage treatment, and furnished theoretical support for subsequent applications.


Asunto(s)
Desnitrificación , Aguas Residuales , Fósforo , Nitrógeno/química , ARN Ribosómico 16S , Nitrificación , Bacterias/metabolismo , Fosfatos , Suelo , Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
9.
J Environ Sci (China) ; 125: 205-214, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375906

RESUMEN

Little information is available on influences of the conversion of dissolved organic phosphorus (DOP) to inorganic phosphorus (IP) on algal growth and subsequent behaviors of arsenate (As(V)) in Microcystis aeruginosa (M. aeruginosa). In this study, the influences factors on the conversion of three typical DOP types including adenosine-5-triphosphate disodium salt (ATP), ß-glycerophosphate sodium (ßP) and D-glucose-6-phosphate disodium salt (GP) were investigated under different extracellular polymeric secretions (EPS) ratios from M. aeruginosa, and As(V) levels. Thus, algal growth, As(V) biotransformation and microcystins (MCs) release of M. aeruginosa were explored in the different converted DOP conditions compared with IP. Results showed that the three DOP to IP without EPS addition became in favor of algal growth during their conversion. Compared with IP, M. aeruginosa growth was thus facilitated in the three converted DOP conditions, subsequently resulting in potential algal bloom particularly at arsenic (As) contaminated water environment. Additionally, DOP after conversion could inhibit As accumulation in M. aeruginosa, thus intracellular As accumulation was lower in the converted DOP conditions than that in IP condition. As(V) biotransformation and MCs release in M. aeruginosa was impacted by different converted DOP with their different types. Specifically, DMA concentrations in media and As(III) ratios in algal cells were promoted in converted ßP condition, indicating that the observed dissolved organic compositions from ßP conversion could enhance As(V) reduction in M. aeruginosa and then accelerate DMA release. The obtained findings can provide better understanding of cyanobacteria blooms and As biotransformation in different DOP as the main phosphorus source.


Asunto(s)
Arsénico , Microcystis , Microcystis/metabolismo , Microcistinas/metabolismo , Arseniatos/metabolismo , Materia Orgánica Disuelta , Eutrofización , Fósforo/metabolismo , Biotransformación , Arsénico/metabolismo
10.
Mar Pollut Bull ; 185(Pt A): 114327, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356339

RESUMEN

The presence of zinc (Zn), a vital element for algal physiological functions, coupled with the silicification of diatoms implies that it plays an integral role in the carbon and silicon cycles of the sea. In this study, we examined the effects of different pCO2 and Zn levels on growth rate, elemental compositions and silicification by Thalassiosira weissflogii. The results showed that under normal pCO2 (400 µatm), cultures of T. weissflogii were depressed for growth rate and silica incorporation rate, but encouraged for cellular silicon content, Si/C, Si/N, and sinking rate when Zn deficient (0.3 pmol L-1). However, cellular silicon and sinking rate of Zn-deficient and Zn-replete (25 pmol L-1) T. weissflogii were decreased and increased at higher pCO2 (800 µatm), respectively. Thus, acidification may affect diatoms significantly differently depending on the Zn levels of the ocean and then alter the biochemical cycling of carbon and silica.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Silicio , Dióxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno , Agua de Mar/química , Zinc/metabolismo , Ácidos , Carbono/metabolismo , Dióxido de Silicio
11.
Anal Chem ; 94(42): 14801-14809, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239120

RESUMEN

Via the photodegradation of dissolved iron (dFe) complexes in the euphotic zone, released free Fe(III) is the most important source of bioavailable iron for eukaryotic phytoplankton. There is an urgent need to establish bioavailability-based dissolved iron speciation (BDIS) methods. Herein, an intelligent system with dFe pretreatment and a colorimetric sensor is developed for real-time monitoring of newly generated Fe(III) ions. According to the photodegradation kinetics of dFe, including kinetic constant and photogenerated time of free Fe(III) ions, 3 sources, 6 kinds, and 12 species of dFe are determined by our photocatalytic-assisted colorimetric sensor and deep learning model within 20.0 min. The algal dFe-uptake for 4 days can be predicted by BDIS with correlation coefficient 0.85, which could be explained by the hard and soft acids and bases theory (HSAB) and density functional theory (DFT). These results successfully demonstrate the proof-of-concept for photodegradation kinetics-based speciation and bioavailability assessments of dissolved metals.


Asunto(s)
Aprendizaje Profundo , Hierro , Hierro/metabolismo , Disponibilidad Biológica , Fotólisis , Colorimetría
12.
Ecotoxicol Environ Saf ; 243: 114017, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027715

RESUMEN

Urea, nickel (Ni) and dissolved organic matter (DOM) from land varied with different sources have a great impact on the offshore ecosystem. The heterogeneity of Ni bioavailability and toxicity of Prorocentrum donghaiense influenced by DOM fractions incubated in urea was investigated in this study. On the occasion, chlorophyll (Chl a) concentration, growth rate, and photosynthesis parameters were monitored to track changes occurring in the test organism. Chl a concentration and photosynthesis parameters in the treatment of hydrophilic DOM (HPI) with Ni-free was significantly higher than that in the control treatment, and similar data were shown in the treatment of hydrophobic DOM(HPO)with the low Ni environment (0.17µmol L-1). However, the opposite phenomena were observed in the treatments of HPO with the higher Ni environment (over 170µmol L-1). Moreover, the EC50 of Ni for P.donghaiense incubated in HPO was relatively lower than that in HPI and control treatment, which implied that HPO elevated the toxicity of Ni. Therefore, the varied DOM compositions because of different origins, as a chelating agent and potential nutrient source in coastal waters, shows the significantly different bioavailability and toxicity of Ni with the increasing inputs of urea, which in turn influences the dynamics of phytoplankton.


Asunto(s)
Dinoflagelados , Níquel , Disponibilidad Biológica , Materia Orgánica Disuelta , Ecosistema , Níquel/toxicidad , Urea
13.
Chemosphere ; 307(Pt 4): 136094, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995200

RESUMEN

Polystyrene (PS) is selected as a representative nanoplastic and persistent pollutant for its difficult degradation and wide application. The environmental risk assessment of PS is obstructed by the toxic dye-based fluorescent PS, which false positives could be induced by the leakage of dye. For high biocompatibility, low toxicity, hydrophilicity, good water dispersibility, strong fluorescent stability, graphene oxide quantum dots (o-CQDs) are selected and embedded into PS microspheres, i.e., o-CQDs@PS, by microemulsion polymerization and denoted as CPS. Meanwhile, the sizes of CPS, e.g., 100, 150, and 200 nm, could be controlled by optimizing the type and number of water-soluble initiators. The anti-interference, low toxicity, and in vivo fluorescent tracing of CPS are proven by the coexistence of metals (including Fe2+, Fe3+, K+, Ba2+, Al3+, Zn2+, Mg2+, Ca2+, and Na+) on the fluorescence intensity of CPS, the growth of Chlorella pyrenoidosa and Artemia cysts as aquatic phytoplankton and zooplankton cultured with CPS, and the transfer of CPS from water into brine shrimp. In the concentration range of 0.1-100 mg/L, CPS can be quantitatively determined, which is suitable for coastal water and wastewater treatment plants. Therefore, CPS with standard size is suitable as reference material of PS.


Asunto(s)
Chlorella , Contaminantes Ambientales , Nanosferas , Puntos Cuánticos , Animales , Artemia/metabolismo , Contaminantes Ambientales/metabolismo , Grafito , Microplásticos , Poliestirenos/toxicidad , Puntos Cuánticos/toxicidad , Agua/metabolismo
14.
J Agric Food Chem ; 70(31): 9769-9778, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895310

RESUMEN

The high-carbohydrate, low-fat, low-protein (HC-LFP) and low-carbohydrate, high-fat, high-protein (LC-HFP) diets are the main dietary patterns worldwide. The influence of dietary patterns on bioavailable metals, gut microbes, and their interaction is still unknown. A biomimetic digestive tract with full functions is constructed to transform the diets into chyme, and the gut microbes are cultured with the corresponding chyme. The diet species-specificity in bioavailable metal content and the positive and negative correlations between bioavailable metals and microbial reproductions are disclosed. The safe dosage and maximum consumption are 369.5 and 858.6 g/d and 268.6 and 3119.0 g/d for LC-HFP and HC-LFP, respectively. When replacing HC-LFP with LC-HFP for 21 days, the bioavailability of Fe and Cr is increased 83.2% and 268.4%, respectively; the reproductions of harmful and benefical microbes are significantly increased and decreased. The prevalences of obesity, inflammation, septicemia, and cancer are increased, and then the risk of dietary pattern shift is disclosed.


Asunto(s)
Microbioma Gastrointestinal , Carbohidratos , Dieta con Restricción de Grasas , Humanos , Obesidad , Medición de Riesgo
15.
Methods Appl Fluoresc ; 10(3)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35483353

RESUMEN

A novel fluorescence sensor for successive detection of Cu2+and Fe3+based on anti-B18H22derivative which possesses 5-hydroxyisoquinoline as an ionophore was synthesized via a one-pot and its structure and photophysical properties were characterized by NMR, HRMS, FTIR, UV-vis, PL and theoretical calculation. The fluorophore displays two emission peaks at 460 nm and 670 nm in THF solution coming from the emission of the locally excited state and intramolecular charge transfer fluorescence, respectively. The complex exhibited obvious aggregation-induced emission enhancement (AIEE) characteristics in THF/H2O solution by increasing the aqueous concentration from 70% to 95%. The AIEE molecules showed a high selectivity towards Cu2+over other metal ions by forming a 2:1 metal-to-ligand complex in THF/H2O (fw = 20%) solution, the fluorescence intensity increased as a linear function of the Cu2+concentration at 460 nm due to the inhibition of PET effect. The fluorescent emission was quenched linearly by the addition of Fe3+, which provides a method for successive determination of Cu2+and Fe3+based on 'off-on-off' fluorescence of the fluorescent. The detection limit of Cu2+and Fe3+was 5.7 × 10-6M and 7.2 × 10-5M respectively. Morever, a rapid identification of Cu2+in the aqueous solution by naked eyes can be realized. In addition, the molecules were pH-sensitive, the fluorescence quenching can be observed in strongly alkaline environment. The method has been applied to the determination of copper ions in water samples with satisfactory results.


Asunto(s)
Cobre , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Iones , Espectrometría de Fluorescencia , Agua
16.
Chemosphere ; 293: 133577, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35016965

RESUMEN

Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.


Asunto(s)
Contaminantes del Suelo , Suelo , Biodegradación Ambiental , Medicago sativa/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/análisis
17.
Food Chem ; 373(Pt B): 131593, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34838401

RESUMEN

Nitrite is one of the most common carcinogens in daily food. Its simple, rapid, inexpensive, and in-field measurement is important for food safety, based on the requirements of the standard from Codex Alimentarius Commission and China. Using polyacrylonitrile (PAN) and thin layer silica gel (SG), p-aminophenylcyclic acid (SA) and naphthalene ethylenediamine hydrochloride (NEH), as carriers and chromogenic agents, respectively, PAN-NSS as nitrite color sensor is proposed. After fixing and protecting of SA and NEH with layer-upon-layer PAN, the validity period of the test paper can be prolonged from 7 days to more than 30 days. The reproducibility of PAN-NSS preparation is ensured by electrospinning. Combined with PAN-NSS, deep convolutional neural network (DCNN) and APP as a visual monitoring platform, which has the functions of rapid sampling, data processing and transmission, intuitive feedback, etc., and provides a fully integrated detection system for field detection.


Asunto(s)
Colorimetría , Nitritos , China , Redes Neurales de la Computación , Reproducibilidad de los Resultados
18.
Opt Express ; 29(15): 22992-23005, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614575

RESUMEN

An ultrahigh sensitive optical fiber sensor for trace detection of Cu2+ concentration in aqueous solution with temperature calibration has been developed in this article. Based on the intermodal interference, the sensor is coated with a hydrogel sensing membrane with specific binding to Cu2+ on the no-core fiber/single mode fiber/no-core fiber structure by using our new spray coating method. The imidazole group in the sensing film combines with Cu2+ to produce chelation, which changes the refractive index of the sensing film. The Cu2+ at trace concentration can be detected by monitoring the displacement of the interference trough. The experimental limit of detection of 3.0×10-12 mol/L can be achieved with the spectral resolution of 0.02 nm. The sensor has also long-term stability of the concentration measurement with the average standard deviation of 1.610×10-12 mol/L over 2 hours observation time and can be compensated the influence of ambient temperature on concentration detection by conducting the temperature calibration. In addition, the sensor has the advantages of strong specificity, simple fabrication and low cost.

19.
J Hazard Mater ; 416: 126146, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492932

RESUMEN

As worldwide edible fungi, Lentinula edodes and Agaricus bisporus accumulate both essential and harmful metals. Metal bioavailability is important for metal benefit-risk assessment. A full functional model of digestive tracts (including digestion, metabolism, and absorption) is established. Under the digestive tract functions, the bioaccessible and bioavailable metals are released from edible fungi and absorbed by intestinal tract, respectively. Based on bioavailable metal contents in the intestine, safe dosage and maximum consumption are 43.52 g/d and 248.7 g/d for Agaricus bisporu, 20.59/328.9 g/d (for males/ female) and 132.9 g/d for Lentinus edodes; V, Co, Ni, Cu, Zn, Se, Cr, Cd and Pb in Agaricus bisporus and Lentinula edodes are absorbed mainly in the large intestine; Fe is mainly absorbed in small intestine; edible fungi species-specificity in metal bioavailability is observed for As and Mn, which are mainly absorbed by small and large intestine for Agaricus bisporus and Lentinus edodes, respectively; and then metal toxicity on small and large intestine is disclosed. Metal benefit-risk is assessed by the content of monolayer liposome-extracted metal in the chyme from small and large intestine, which is controlled by the gastrointestinal functions, metal and edible fungi species.


Asunto(s)
Agaricus , Metales Pesados , Disponibilidad Biológica , Biomimética , Digestión , Monitoreo del Ambiente , Femenino , Tracto Gastrointestinal/metabolismo , Humanos , Metales Pesados/análisis , Medición de Riesgo
20.
Mar Pollut Bull ; 163: 111990, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33461075

RESUMEN

The hydromedusa Blackfordia virginica is an invasive species that has disrupted coastal marine food webs throughout the world. Here, we report the response of plankton community to B. virginica blooms in a subtropical lagoon in China. Chlorophyll-a concentrations increased after the peak of B. virginica abundance, which was coincident with high concentrations of ammonium. An increase of the biomass and composition of pico- and nano-phytoplankton during the bloom resulted from bottom-up effects due to the nutrients excreted by B. virginica. The average size and grazing rates of microzooplankton concurrently decreased. The negative correlation between the abundances of B. virginica and microzooplankton was accurately simulated by a generalized linear model and redundancy analysis. This study provided empirical evidence of the impacts of the B. virginica bloom on the food web and the mechanisms responsible for those effects. These impacts may lead to serious ecological and environmental consequences for the lagoonal ecosystem.


Asunto(s)
Ecosistema , Plancton , Biomasa , China , Cadena Alimentaria , Fitoplancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...