Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(1): e30662, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292013

RESUMEN

Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.


Asunto(s)
Ácido Glutámico/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas Eferentes/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Inhibición Neural/fisiología , Neuronas Eferentes/metabolismo , Neuronas Eferentes/fisiología , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Fosfolipasa C beta/genética , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Transmisión Sináptica/genética , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiología
2.
PLoS One ; 6(10): e25471, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22028776

RESUMEN

Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABA(B) receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+)-dependent; removing Ca(2+) from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.


Asunto(s)
Neurotransmisores/metabolismo , Serotonina/metabolismo , Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Gusto/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Ácidos/farmacología , Animales , Técnicas Biosensibles , Células CHO , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Papilas Gustativas/efectos de los fármacos
3.
J Neurosci ; 31(38): 13654-61, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940456

RESUMEN

In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.


Asunto(s)
Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2X2/biosíntesis , Receptores Purinérgicos P2X/biosíntesis , Transmisión Sináptica/fisiología , Papilas Gustativas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Calcio/metabolismo , Conexinas/metabolismo , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Cloruro de Potasio/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X/genética , Transmisión Sináptica/genética , Canales Catiónicos TRPM/metabolismo , Gusto/fisiología , Papilas Gustativas/efectos de los fármacos , Papilas Gustativas/ultraestructura
4.
J Neurosci ; 31(15): 5782-91, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490220

RESUMEN

Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits ß2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) ß3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.


Asunto(s)
Antagonistas del GABA/farmacología , Receptores de GABA/fisiología , Papilas Gustativas/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Animales , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Neurotransmisores/metabolismo , ARN/genética , Receptores de GABA/genética , Receptores Presinapticos/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Gusto/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
5.
J Physiol ; 588(Pt 13): 2343-50, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20498227

RESUMEN

ATP is a transmitter secreted from taste bud receptor (Type II) cells through ATP-permeable gap junction hemichannels most probably composed of pannexin 1. The elevation of intracellular Ca(2+) and membrane depolarization are both believed to be involved in transmitter secretion from receptor cells, but their specific roles have not been fully elucidated. In the present study, we show that taste-evoked ATP secretion from mouse vallate receptor cells is evoked by the combination of intracellular Ca(2+) release and membrane depolarization. Unexpectedly, ATP secretion is not blocked by tetrodotoxin, indicating that transmitter release from these cells still takes place in the absence of action potentials. Taste-evoked ATP secretion is absent in receptor cells isolated from TRPM5 knockout mice or in taste cells from wild type mice where current through TRPM5 channels has been eliminated. These findings suggest that membrane voltage initiated by TRPM5 channels is required for ATP secretion during taste reception. Nonetheless, even in the absence of TRPM5 channel activity, ATP release could be triggered by depolarizing cells with KCl. Collectively, the findings indicate that taste-evoked elevation of intracellular Ca(2+) has a dual role: (1) Ca(2+) opens TRPM5 channels to depolarize receptor cells and (2) Ca(2+) plus membrane depolarization opens ATP-permeable gap junction hemichannels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/fisiología , Membrana Celular/fisiología , Canales Catiónicos TRPM/fisiología , Papilas Gustativas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células CHO , Membrana Celular/metabolismo , Separación Celular , Cricetinae , Cricetulus , Estimulación Eléctrica , Electrofisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Gusto/fisiología , Papilas Gustativas/citología
6.
J Neurosci ; 29(44): 13909-18, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19890001

RESUMEN

Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.


Asunto(s)
Adenosina Trifosfato/fisiología , Comunicación Autocrina/fisiología , Comunicación Paracrina/fisiología , Serotonina/fisiología , Papilas Gustativas/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Gusto/fisiología
7.
J Neurosci ; 28(49): 13088-93, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19052199

RESUMEN

ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Papilas Gustativas/metabolismo , Lengua/fisiología , Antagonistas Adrenérgicos alfa/farmacología , Animales , Células CHO , Células Quimiorreceptoras/efectos de los fármacos , Cricetinae , Cricetulus , Cicloheximida/farmacología , Fura-2 , Indicadores y Reactivos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Norepinefrina/farmacología , Cloruro de Potasio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Receptores Adrenérgicos alfa 1/genética , Sacarina/farmacología , Transmisión Sináptica/efectos de los fármacos , Gusto/efectos de los fármacos , Gusto/fisiología , Papilas Gustativas/efectos de los fármacos , Lengua/inervación
8.
J Physiol ; 586(12): 2903-12, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18420705

RESUMEN

Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.


Asunto(s)
Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Receptores Presinapticos/fisiología , Papilas Gustativas/citología , Papilas Gustativas/fisiología , Gusto/fisiología , Lengua/citología , Lengua/fisiología , Animales , Células Cultivadas , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...