Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372979

RESUMEN

TRIM28/KAP1/TIF1ß is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Represoras , Humanos , Proteínas Represoras/genética , Células K562 , Acetilación , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Mutación , Expresión Génica , Zinc/metabolismo
2.
J Inflamm (Lond) ; 18(1): 22, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090459

RESUMEN

BACKGROUND: Tristetraprolin (TTP) family proteins contain conserved tandem CCCH zinc-finger binding to AU-rich elements and C-terminal NOT1-binding domain. TTP is phosphorylated extensively in cells, and its mRNA destabilization activity is regulated by protein phosphorylation. METHODS: We generated an antibody against phospho-Serine316 located at the C-terminal NOT1-binding site and examined TTP phosphorylation in LPS-stimulated RAW264.7 cells. Knockout of TTP was created in RAW264.7 cells using CRISPR/Cas9 gene editing to explore TTP functions. RESULTS: We demonstrated that Ser316 was phosphorylated by p90 ribosomal S6 kinase 1 (RSK1) and p38-activated protein kinase (MK2) and dephosphorylated by Protein Phosphatase 2A (PP2A). A phosphorylation-mimic mutant of S316D resulted in dissociation with the CCR4-NOT deadenylase complex through weakening interaction with CNOT1. Furthermore, Ser316 and serines 52 and 178 were independently contributed to the CCR4-NOT complex recruitment in the immunoprecipitation assay using phosphor-mimic mutants. In RAW264.7 macrophages, TTP was induced, and Ser316 was phosphorylated through RSK1 and MK2 by LPS stimulation. Knockout of TTP resulted in TNFα mRNA increased due to mRNA stabilization. Overexpression of non-phosphorylated S316A TTP mutant can restore TTP activity and lead to TNFα mRNA decreased. GST pull-down and RNA pull-down analyses demonstrated that endogenous TTP with Ser316 phosphorylation decreased the interaction with CNOT1. CONCLUSIONS: Our results suggest that the TTP-mediated mRNA stability is modulated by Ser316 phosphorylation via regulating the TTP interaction with the CCR4-NOT deadenylase complex.

3.
Bioresour Technol ; 198: 651-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433790

RESUMEN

The use of lignocellulosic feedstock for lactic acid production with a difficulty is that the release of inhibitory compounds during the pretreatment process which inhibit the growth of microorganism. Thus we report a novel lactic acid bacterium, Lactobacillus paracasei 7 BL, that has a high tolerance to inhibitors and produced optically pure l-lactic acid after the interruption of ldhD gene. The strain 7 BL fermented glucose efficiently and showed high titer of l-lactic acid (215 g/l) by fed-batch strategy. In addition, 99 g/l of l-lactic acid with high yield (0.96 g/g) and productivity (2.25-3.23 g/l/h) was obtained by using non-detoxified wood hydrolysate. Rice straw hydrolysate without detoxification was also tested and yielded a productivity rate as high as 5.27 g/l/h. Therefore, L. paracasei 7 BL represents a potential method of l-lactic acid production from lignocellulosic biomass and has attractive application for industries.


Asunto(s)
Biotecnología/métodos , Ácido Láctico/biosíntesis , Lactobacillus/genética , Lactobacillus/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Fermentación , Ingeniería Genética/métodos , Glucosa/metabolismo , Hidrólisis , Lactato Deshidrogenasas/genética , Lactato Deshidrogenasas/metabolismo , Madera/química
4.
Neurotoxicology ; 48: 120-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25800379

RESUMEN

The unique property of trehalose encourages its pharmaceutical application in aggregation-mediated neurodegenerative disorders, including Alzheimer's, Parkinson's, and many polyglutamine (polyQ)-mediated diseases. However, trehalose is digested into glucose by trehalase and which reduced its efficacy in the disease target tissues. Therefore, searching trehalase-indigestible analogs of trehalose is a potential strategy to enhance therapeutic effect. In this study, two trehalase-indigestible trehalose analogs, lactulose and melibiose, were selected through compound topology and functional group analyses. Hydrogen-bonding network analyses suggest that the elimination of the hydrogen bond between the linker ether and aspartate 321 (D321) of human trehalase is the key for lactulose and melibiose to avoid the hydrolyzation. Using polyQ-mediated spinocerebellar ataxia type 17 (SCA17) cell and slice cultures, we found the aggregation was significantly prohibited by trehalose, lactulose, and melibiose, which may through up-regulating of autophagy. These findings suggest the therapeutic applications of trehalase-indigestible trehalose analogs in aggregation-associated neurodegenerative diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Digestión , Diseño de Fármacos , Lactulosa/farmacología , Melibiosa/farmacología , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Péptidos/metabolismo , Trehalasa/metabolismo , Animales , Línea Celular , Diseño Asistido por Computadora , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Enlace de Hidrógeno , Hidrólisis , Lactulosa/química , Lactulosa/metabolismo , Melibiosa/química , Melibiosa/metabolismo , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Estructura Molecular , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Péptidos/genética , Agregado de Proteínas , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factores de Tiempo , Transfección , Trehalosa/química , Trehalosa/metabolismo , Trehalosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...