Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Stem Cells ; 16(3): 305-323, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38577234

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) modulated by various exogenous signals have been applied extensively in regenerative medicine research. Notably, nanosecond pulsed electric fields (nsPEFs), characterized by short duration and high strength, significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways. Consequently, we used transcriptomics to study changes in messenger RNA (mRNA), long noncoding RNA (lncRNA), microRNA (miRNA), and circular RNA expression during nsPEFs application. AIM: To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs. METHODS: The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing. MSCs were pretreated with 5-pulse nsPEFs (100 ns at 10 kV/cm, 1 Hz), followed by total RNA isolation. Each transcript was normalized by fragments per kilobase per million. Fold change and difference significance were applied to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions, complemented by quantitative polymerase chain reaction verification. RESULTS: In total, 263 DEGs were discovered, with 92 upregulated and 171 downregulated. DEGs were predominantly enriched in epithelial cell proliferation, osteoblast differentiation, mesenchymal cell differentiation, nuclear division, and wound healing. Regarding cellular components, DEGs are primarily involved in condensed chromosome, chromosomal region, actin cytoskeleton, and kinetochore. From aspect of molecular functions, DEGs are mainly involved in glycosaminoglycan binding, integrin binding, nuclear steroid receptor activity, cytoskeletal motor activity, and steroid binding. Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation. CONCLUSION: Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs, 2 miRNAs, and 65 lncRNAs. Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways, which are involved in vesicular transport, calcium ion transport, cytoskeleton, and cell differentiation.

2.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37508783

RESUMEN

This study compares the accuracy and safety of pedicle screw placement using a 3D navigation template with the free-hand fluoroscopy technique in scoliotic patients. Fifteen scoliotic patients were recruited and divided into a template group (eight cases) and a free-hand group (seven cases). All patients received posterior corrective surgeries, and the pedicle screw was placed using a 3D navigation template or a free-hand technique. After surgery, the positions of the pedicle screws were evaluated using CT. A total of 264 pedicle screws were implanted in 15 patients. Both the two techniques were found to achieve satisfactory safety of screw insertion in scoliotic patients (89.9% vs. 90.5%). In the thoracic region, the 3D navigation template was able to achieve a much higher accuracy of screw than the free-hand technique (75.3% vs. 60.4%). In the two groups, the accuracy rates on the convex side were slightly higher than on the concave side, while no significance was seen. In terms of rotational vertebrae, no significant differences were seen in Grades I or II vertebrae between the two groups. In conclusion, the 3D navigation template technique significantly increased the accuracy of thoracic pedicle screw placement, which held great potential for extensively clinical application.

3.
Bioengineering (Basel) ; 10(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370644

RESUMEN

The tremendous personal and economic burden worldwide caused by low back pain (LBP) has been surging in recent years. While intervertebral disc degeneration (IVDD) is the leading cause of LBP and vast efforts have been made to develop effective therapies, this problem is far from being resolved, as most treatments, such as painkillers and surgeries, mainly focus on relieving the symptoms rather than reversing the cause of IVDD. However, as stem/progenitor cells possess the potential to regenerate IVD, a deeper understanding of the early development and role of these cells could help to improve the effectiveness of stem/progenitor cell therapy in treating LBP. Single-cell RNA sequencing results provide fresh insights into the heterogeneity and development patterns of IVD progenitors; additionally, we compare mesenchymal stromal cells and IVD progenitors to provide a clearer view of the optimal cell source proposed for IVD regeneration.

4.
Neural Regen Res ; 18(2): 422-427, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900440

RESUMEN

The spinal cord is at risk of injury during spinal surgery. If intraoperative spinal cord injury is identified early, irreversible impairment or loss of neurological function can be prevented. Different types of spinal cord injury result in damage to different spinal cord regions, which may cause different somatosensory and motor evoked potential signal responses. In this study, we examined electrophysiological and histopathological changes between contusion, distraction, and dislocation spinal cord injuries in a rat model. We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials. Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis. The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion. After distraction injury, extracellular spaces were slightly but not significantly enlarged; somatosensory evoked potential responses slightly decreased and motor evoked potential responses were lost. Correlation analysis showed that histological and electrophysiological findings were significantly correlated and related to injury type. Intraoperative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.

5.
Bioact Mater ; 19: 139-154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35475028

RESUMEN

Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor ß1(TGF-ß1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-ß/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.

6.
Global Spine J ; 13(3): 724-729, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783245

RESUMEN

STUDY DESIGN: A biomechanical study. OBJECTIVES: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. METHODS: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen's annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. RESULTS: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens (P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision (P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. CONCLUSIONS: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.

7.
World J Stem Cells ; 14(11): 798-814, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36483847

RESUMEN

BACKGROUND: Cartilage tissue engineering is a promising strategy for treating cartilage damage. Matrix formation by adipose-derived stem cells (ADSCs), which are one type of seed cell used for cartilage tissue engineering, decreases in the late stage of induced chondrogenic differentiation in vitro, which seriously limits research on ADSCs and their application. AIM: To improve the chondrogenic differentiation efficiency of ADSCs in vitro, and optimize the existing chondrogenic induction protocol. METHODS: Tumor necrosis factor-alpha (TNF-α) inhibitor was added to chondrogenic culture medium, and then Western blotting, enzyme linked immunosorbent assay, immunofluorescence and toluidine blue staining were used to detect the cartilage matrix secretion and the expression of key proteins of nuclear factor kappa-B (NF-κB) signaling pathway. RESULTS: In this study, we found that the levels of TNF-α and matrix metalloproteinase 3 were increased during the chondrogenic differentiation of ADSCs. TNF-α then bound to its receptor and activated the NF-κB pathway, leading to a decrease in cartilage matrix synthesis and secretion. Blocking TNF-α with its inhibitors etanercept (1 µg/mL) or infliximab (10 µg/mL) significantly restored matrix formation. CONCLUSION: Therefore, this study developed a combination of ADSC therapy and targeted anti-inflammatory drugs to optimize the chondrogenesis of ADSCs, and this approach could be very beneficial for translating ADSC-based approaches to treat cartilage damage.

8.
JOR Spine ; 5(3): e1218, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36203863

RESUMEN

Backgrounds: Cartilaginous endplate (CEP) plays an essential role in intervertebral disc (IVD) health and disease. The aim was to compare the CEP structure of lumbar IVD and to reveal the detailed pattern of integration between the CEP and bony endplate (BEP) from different species. Methods: A total of 34 IVDs (5 human, 5 goat, 8 pig, 8 rabbit, and 8 rat IVDs) were collected, fixed and midsagittally cut; in each IVD, one-half was used for histological staining to observe the CEP morphology, and the other half was used for scanning electron microscopy (SEM) analysis to measure the diameters and distributions of collagen fibers in the central and peripheral CEP areas and to observe the pattern of CEP-BEP integration from different species. Results: The human, pig, goat, and rabbit IVDs had the typical BEP-CEP structure, but the rat CEP was directly connected with the growth plate. Human CEP was the thickest (896.95 ± 87.71 µm) among these species, followed by pig, goat, rat, and rabbit CEPs. Additionally, the mean cellular density of the rabbit CEP was the highest, which was 930 ± 202 per mm2, followed by the rat, goat, pig, and human CEPs. In all the species, the collagen fiber diameter in the peripheral area was much bigger than that in the central area. The collagen fiber diameters of CEP from the human, pig, goat, and rat were distributed between 35 nm and 65 nm. The BEP and CEP were connected by the collagen from the CEP, aggregating into bundles or cross links with each other to form a network, and anchored to BEP. Conclusions: Significant differences in the thickness, cellular density, and collagen characterization of CEPs from different species were demonstrated; the integration of BEP-CEP in humans, pigs, goats, and rabbits was mainly achieved by the collagen bundles anchoring system, while the typical BEP-CEP interface did not exist in rats.

9.
Pharmaceutics ; 13(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34834211

RESUMEN

Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.

10.
J Orthop Translat ; 29: 123-133, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34249610

RESUMEN

OBJECTIVE: Low back pain is a leading cause of disabilities worldwide, and intervertebral disc degeneration (IVDD)-related disorders have been recognised as one of the main contributors. Nevertheless, the underlying mechanism has not yet been fully understood. The aim of this study was to investigate the role of the miR-133a-5p/FBXO6 axis in the regulation of IVDD. METHODS: RT-qPCR, WB and IHC were performed to assess the expression of FBXO6 in human IVD tissues. Nucleus pulposus (NP) cells were treated with IL-1ß to induce IVDD cellular model. Silence of FBXO6 was achieved using specific siRNAs. CCK-8 assay, flow cytometry, TUNEL assay, RT-qPCR and WB were used to evaluate the role and mechanism of FBXO6 in the process of IVDD. Online tools, GSE datasets and RT-qPCR were used to search the candidate miRNAs targeting FBXO6. The direct binding sites between FBXO6 and miR-133a-5p were further verified by a dual luciferase assay. RT-qPCR, WB and rescue experiments were conducted to identify the regulatory function of miR-133a-5p on the expression of aggrecan, collagen Ⅱ, MMP3, ADAMTS5, IL-6 and COX2. In addition, the role of the NF-κB pathway in regulating miR-133a-5p was studied using lentiviral shRNA, WB and RT-qPCR. RESULTS: Results showed that FBXO6 mainly expressed in the NP tissue of IVD and the expression of FBXO6 decreased with the process of IVDD as well as under IL-1ß stimulation. The silence of FBXO6 led to the decreased expression of aggrecan and collagen Ⅱ and the increased expression of MMP3, ADAMTS5, IL-6 and COX2, which further induced the degeneration of NP cells. The bioinformatic analysis showed that miR-133a-5p was the candidate miRNA targeting FBXO6. miR-133a-5p was upregulated in IVDD tissues and significantly inhibited the expression of FBXO6. The inhibition of miR-133a-5p ameliorated the acceleration of IVDD induced by the silence of FBXO6 in vitro. Moreover, it was demonstrated that IL-1ß regulated the expression of the miR-133a-5p/FBXO6 axis via the NF-κB pathway in NP cells. CONCLUSION: miR-133a-5p was upregulated by IL-1ß to aggravate intervertebral disc degeneration via sponging FBXO6. Inhibiting miR-133a-5p expression or rescuing FBXO6 expression may be promising strategies for the treatment of IVDD. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study suggests that the miR-133a-5p/FBXO6 axis could regulate NP cells proliferation, apoptosis, synthesis and degradation of extracellular matrix, which provides a promising therapeutic target and strategy for the treatment of IVDD.

11.
Front Bioeng Biotechnol ; 8: 578988, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363124

RESUMEN

Interest is rapidly growing in the design and preparation of bioactive scaffolds, mimicking the biochemical composition and physical microstructure for tissue repair. In this study, a biomimetic biomaterial with nanofibrous architecture composed of silk fibroin and hyaluronic acid (HA) was prepared. Silk fibroin nanofiber was firstly assembled in water and then used as the nanostructural cue; after blending with hyaluronan (silk:HA = 10:1) and the process of freeze-drying, the resulting composite scaffolds exhibited a desirable 3D porous structure and specific nanofiber features. These scaffolds were very porous with the porosity up to 99%. The mean compressive modulus of silk-HA scaffolds with HA MW of 0.6, 1.6, and 2.6 × 106 Da was about 28.3, 30.2, and 29.8 kPa, respectively, all these values were much higher than that of pure silk scaffold (27.5 kPa). This scaffold showed good biocompatibility with bone marrow mesenchymal stem cells, and it enhanced the cellular proliferation significantly when compared with the plain silk fibroin. Collectively, the silk-hyaluronan composite scaffold with a nanofibrous structure and good biocompatibility was successfully prepared, which deserved further exploration as a biomimetic platform for mesenchymal stem cell-based therapy for tissue repair.

12.
World J Orthop ; 11(11): 523-527, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33269219

RESUMEN

BACKGROUND: The correction surgery for severely multidimensional spinal deformity in neurofibromatosis type I is very difficult and it is still a very big challenge for spine surgeons. CASE SUMMARY: A 44-year-old woman presented with progressive kyphosis for more than 10 years and low back pain for 2 years. She had been diagnosed with neurofibromatosis at a local hospital many years ago. Conservative treatments had been applied, but the symptoms got worse rather than alleviated. Therefore, surgery was required. CONCLUSION: For this patient with severe deformity, the correction treatment of Ponte osteotomy followed by satellite rod technique in the region of the apical vertebra and the technique of pedicle screws and dual iliac screws had been applied, and successful clinical outcomes were achieved.

13.
World J Stem Cells ; 12(9): 952-965, 2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-33033557

RESUMEN

Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.

15.
Mater Sci Eng C Mater Biol Appl ; 110: 110640, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204074

RESUMEN

Hydrogen (H2) is one of the major biodegradation products of magnesium (Mg) alloys implanted for bony fracture healing and reconstruction; H2 thus plays a significant role in the regulation of local microenvironment and the biology of resident cells. The interactions between the H2 and the local cells are of great interest, and a full understanding of the effect of H2 on bone marrow mononuclear cells (BMMCs) would accelerate the development of effective strategies for successful bony healing. This study investigates how H2, with different concentrations and durations, regulates the osteoclastogenesis of mouse BMMCs. First, using H2 with five concentrations (0%, 2%, 25%, 50% and 75%) and three durations (5, 7 and 10 days), the osteoclastogenesis of mouse BMMCs in these H2 conditions were measured using TRAP staining, F-actin ring formation assay, pit formation assay and RT-qPCR analysis. Based on these findings, the proliferation assay, apoptosis assay, western blot analysis and ELISA assay of BMMCs after osteoclast induction were performed. The findings showed that H2 (especially the 50% and 75% H2) obviously inhibited the osteoclast formation, function and osteoclast-related genes expression of osteoclast-induced BMMCs; additionally, H2 (50%) was found to reduce the proliferation, promote the apoptosis and inhibit the expression of osteoclast-related proteins of BMMCs with the presence of osteoclast-induced medium. Therefore, H2 significantly inhibited the osteoclastogenesis of mouse BMMCs, which may become a new therapeutic agent for anti-bony resorption and open new avenues for the translational research of Mg alloys.


Asunto(s)
Células de la Médula Ósea/citología , Hidrógeno/farmacología , Leucocitos Mononucleares/citología , Osteogénesis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
16.
Front Bioeng Biotechnol ; 8: 610544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392174

RESUMEN

Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.

17.
World J Stem Cells ; 11(12): 1104-1114, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31875871

RESUMEN

Stem cells have shown great potential in vascular repair. Numerous evidence indicates that mechanical forces such as shear stress and cyclic strain can regulate the adhesion, proliferation, migration, and differentiation of stem cells via serious signaling pathways. The enrichment and differentiation of stem cells play an important role in the angiogenesis and maintenance of vascular homeostasis. In normal tissues, blood flow directly affects the microenvironment of vascular endothelial cells (ECs); in pathological status, the abnormal interactions between blood flow and vessels contribute to the injury of vessels. Next, the altered mechanical forces are transduced into cells by mechanosensors to trigger the reformation of vessels. This process occurs when signaling pathways related to EC differentiation are initiated. Hence, a deep understanding of the responses of stem cells to mechanical stresses and the underlying mechanisms involved in this process is essential for clinical translation. In this the review, we provide an overview of the role of stem cells in vascular repair, outline the performance of stem cells under the mechanical stress stimulation, and describe the related signaling pathways.

18.
Stem Cells Int ; 2019: 4242178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885606

RESUMEN

The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.

19.
Case Rep Surg ; 2019: 2350958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065396

RESUMEN

Oesophageal perforation is a rare complication occurring during or after cervical spine surgery, and the risk factors are not well understood. This study presents a case of a 25-year-old man with oesophageal perforation after anterior cervical spine surgery. It is suggested that four factors (anatomical structure, mechanism of trauma, implant dislodgment, and the operation) could induce postoperative oesophageal perforation after cervical spine surgery performed using the anterior surgical approach. A comprehensive understanding and early management of this complication are necessary for successful therapy.

20.
Front Pharmacol ; 10: 351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031622

RESUMEN

Inflammatory bowel disease (IBD) represents a group of intestinal disorders with self-destructive and chronic inflammation in the digestive tract, requiring long-term medications. However, as many side effects and drug resistance are frequently encountered, safer and more effective agents for IBD treatment are urgently needed. Over the past few decades, a variety of natural alkaloids made of plants or medicinal herbs have attracted considerable interest because of the excellent antioxidant and anti-inflammatory properties; additionally, these alkaloids have been reported to reduce the colonic inflammation and damage in a range of colitic models. In this review paper, we summarize the recent findings regarding the anti-colitis activity of plant-derived alkaloids and emphasize their therapeutic potential for the treatment of IBD; obvious improvement of the colonic oxidative and pro-inflammatory status, significant preservation of the epithelial barrier function and positive modulation of the gut microbiota are the underlying mechanisms for the plant-derived alkaloids to treat IBD. Further clinical trials and preclinical studies to unravel the molecular mechanism are essential to promote the clinical translation of plant-derived alkaloids for IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...