Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(27): 8204, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35919427

RESUMEN

[This corrects the article DOI: 10.1039/D0SC01146K.].

2.
Acta Biomater ; 147: 235-244, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644327

RESUMEN

Hydrogel as a local drug depot can increase drug concentration at the tumor site. However, conventional drug-loaded hydrogel is typically formed by direct dissolution of drug molecules inside the hydrogel, which usually suffers from limited drug retention and poor tumor penetration. In this study, a nanocomposite hydrogel consisting of oxaliplatin (OXA)-conjugated G5 polyamidoamine (G5-OXA) and oxidized dextran (Dex-CHO) is constructed to improve local drug delivery. The OXA-containing nanocomposite hydrogel (denoted as PDO gel) is injectable and could maintain in vivo up to more than three weeks, which increases drug retention in tumor tissues. More interestingly, G5-OXA released from the PDO gel show potent tumor penetration mainly through an active transcytosis process. In vivo antitumor studies in an orthotopic 4T1 tumor model show that PDO gel significantly inhibits primary tumor growth as well as the metastasis. In addition, the PDO gel can also activate the immunosuppressive tumor microenvironment through immunogenic cell death effect, and further improves therapeutic efficacy with the combination of PD-1 antibody. These results demonstrate that the nanocomposite hydrogel can simultaneously enhance the retention and penetration of chemotherapeutic drugs via the combination of both advantages of hydrogel and nanoparticles, which provides new insights for the design of local drug delivery systems. STATEMENT OF SIGNIFICANCE: Hydrogel represents an important class of local drug delivery depot. However, conventional drug-loaded hydrogel is usually achieved by direct dissolution of small drug molecules inside the hydrogel, which typically suffers from limited drug retention and poor tumor penetration. Herein, we developed a nanocomposite hydrogel, which could gradually degrade and release drug-conjugated small nanoparticles (∼ 6 nm) for improved tumor penetration through the combination of an active transcytosis process and a passive diffusion process. This nanocomposite hydrogel system improved tumor penetration and retention of drug in primary tumors as well as the drug deposition in lymph nodes, which significantly suppressed tumor growth and metastasis.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Hidrogeles/química , Nanogeles , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/patología , Oxaliplatino/uso terapéutico , Resultado del Tratamiento , Microambiente Tumoral
3.
Small ; 17(29): e2101208, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145747

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a low survival rate. The therapeutic effect of chemotherapy and immunotherapy for PDAC is disappointing due to the presence of dense tumor stroma and immunosuppressive cells in the tumor microenvironment (TME). Herein, a tumor-penetrating nanoparticle is reported to modulate the deep microenvironment of PDAC for improved chemoimmunotherapy. The tumor pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated. They self-assemble into nanoparticles (denoted as SPN@Pro-Gem) with the size around 120 nm at neutral pH, but switch into small particles (≈8 nm) at tumor site to facilitate deep delivery of Gem into the tumor parenchyma. In addition to killing cancer cells that resided deeply in the tumor tissue, SPN@Pro-Gem could modulate the TME by reducing the abundance of tumor-associated macrophages and myeloid-derived suppressor cells as well as upregulating the expression level of PD-L1 of tumor cells. This collectively facilitates the infiltration of cytotoxic T cells into the tumors and renders checkpoint inhibitors more effective in previously unresponsive PDAC models. This study reveals a promising strategy for improving the chemoimmunotherapy of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Inmunoterapia , Nanomedicina , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral
4.
Chem Sci ; 11(20): 5323-5327, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34122990

RESUMEN

Herein, a versatile strategy for the construction of biofunctional Janus particles (JPs) through the combination of Pickering emulsion and copper-free click chemistry is developed for the study of particle-mediated cell-cell interactions. A variety of biomolecules including bovine serum albumin (BSA), ferritin, transferrin (Tf), and anti-signal regulatory protein alpha antibodies (aSIRPα), etc., can be incorporated into the Janus platform in a spatially defined manner. JPs consisting of Tf and aSIRPα (Tf-SPA1-aSIRPα JPs) demonstrate a significantly improved binding affinity to either macrophages or tumor cells compared to their uniformly modified counterparts. More importantly, Tf-SPA1-aSIRPα JPs mediate more efficient phagocytosis of tumor cells by macrophages as revealed by real-time high-content confocal microscopy. This study demonstrates the potential advantages of JPs in mediating cell-cell interactions and may contribute to the emerging cancer immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...