Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(4): 867-878, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114644

RESUMEN

Osimertinib (Osi) is widely used as a first-line treatment for non-small cell lung cancer (NSCLC) with EGFR mutations. However, the majority of patients treated with Osi eventually relapse within a year. The mechanisms of Osi resistance remain largely unexplored, and efficient strategies to reverse the resistance are urgently needed. Here, we developed a lactoferrin-modified liposomal codelivery system for the combination therapy of Osi and panobinostat (Pan), an epigenetic regulator of histone acetylation. We demonstrated that the codelivery liposomes could efficiently repolarize tumor-associated macrophages (TAM) from the M2 to M1 phenotype and reverse the epithelial-mesenchymal transition (EMT)-associated drug resistance in the tumor cells, as well as suppress glycolysis, lactic acid production, and angiogenesis. Our results suggested that the combination therapy of Osi and Pan mediated by liposomal codelivery is a promising strategy for overcoming Osi resistance in NSCLC.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Epigénesis Genética , Indoles , Neoplasias Pulmonares , Panobinostat , Inhibidores de Proteínas Quinasas , Pirimidinas , Humanos , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Panobinostat/farmacología , Panobinostat/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
2.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561552

RESUMEN

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Colitis Ulcerosa , Disulfiram/farmacocinética , Lactoferrina , Síndrome de Respuesta Inflamatoria Sistémica , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Animales , Antiinflamatorios/farmacología , Materiales Biomiméticos/farmacología , COVID-19/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Modelos Animales de Enfermedad , Disulfiram/farmacología , Portadores de Fármacos/farmacología , Humanos , Inmunosupresores/farmacología , Lactoferrina/metabolismo , Lactoferrina/farmacología , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/uso terapéutico , Piroptosis/efectos de los fármacos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Resultado del Tratamiento
4.
Acta Pharmacol Sin ; 42(9): 1516-1523, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33311600

RESUMEN

Immune checkpoint blockade therapy has become a first-line treatment in various cancers. But there are only a small percent of colorectal patients responding to PD-1/PD-L1 blockage immunotherapy. How to increase their treatment efficacy is an urgent and clinically unmet need. It is acknowledged that immunogenic cell death (ICD) induced by some specific chemotherapy can enhance antitumor immunity. Chemo-based combination therapy can yield improved outcomes by activating the immune system to eliminate the tumor, compared with monotherapy. Here, we develop a PD-L1-targeting immune liposome (P-Lipo) for co-delivering irinotecan (IRI) and JQ1, and this system can successfully elicit antitumor immunity in colorectal cancer through inducing ICD by IRI and interfering in the immunosuppressive PD-1/PD-L1 pathway by JQ1. P-Lipo increases intratumoral drug accumulation and promotes DC maturation, and thereby facilitates adaptive immune responses against tumor growth. The remodeling tumor immune microenvironment was reflected by the increased amount of CD8+ T cells and the release of IFN-γ, and the reduced CD4+Foxp3+ regulatory T cells (Tregs). Collectively, the P-Lipo codelivery system provides a chemo-immunotherapy strategy that can effectively remodel the tumor immune microenvironment and activate the host immune system and arrest tumor growth.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Azepinas/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Irinotecán/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Triazoles/farmacología , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/efectos de los fármacos
5.
Acta Pharmacol Sin ; 40(11): 1373-1385, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31444476

RESUMEN

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), also known as APO2L, belongs to the tumor necrosis factor family. By binding to the death receptor 4 (DR4) or DR5, TRAIL induces apoptosis of tumor cells without causing side toxicity in normal tissues. In recent years TRAIL-based therapy has attracted great attention for its promise of serving as a cancer drug candidate. However, the treatment efficacy of TRAIL protein was under expectation in the clinical trials because of the short half-life and the resistance of cancer cells. TRAIL gene transfection can produce a "bystander effect" of tumor cell killing and provide a potential solution to TRAIL-based cancer therapy. In this review we focus on TRAIL gene therapy and various design strategies of TRAIL DNA delivery including non-viral vectors and cell-based TRAIL therapy. In order to sensitize the tumor cells to TRAIL-induced apoptosis, combination therapy of TRAIL DNA with other drugs by the codelivery methods for yielding a synergistic antitumor efficacy is summarized. The opportunities and challenges of TRAIL-based gene delivery and therapy are discussed.


Asunto(s)
ADN/uso terapéutico , Técnicas de Transferencia de Gen , Neoplasias/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Animales , Antineoplásicos/uso terapéutico , Apoptosis/fisiología , Línea Celular Tumoral , Dendrímeros/química , Sinergismo Farmacológico , Terapia Genética/métodos , Humanos , Liposomas/química , Neoplasias/tratamiento farmacológico , Péptidos Cíclicos/química
7.
Acta Pharmacol Sin ; 38(6): 885-896, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28479604

RESUMEN

Multidrug resistance (MDR) is a major hurdle in cancer chemotherapy and makes the treatment benefits unsustainable. Combination therapy is a commonly used method for overcoming MDR. In this study we investigated the anti-MDR effect of dihydroartemisinin (DHA), a derivative of artemisinin, in combination with doxorubicin (Dox) in drug-resistant human colon tumor HCT8/ADR cells. We developed a tumor-targeting codelivery system, in which the two drugs were co-encapsulated into the mannosylated liposomes (Man-liposomes). The Man-liposomes had a mean diameter of 158.8 nm and zeta potential of -15.8 mV. In the HCT8/ADR cells that overexpress the mannose receptors, the Man-liposomes altered the intracellular distribution of Dox, resulting in a high accumulation of Dox in the nuclei and thus displaying the highest cytotoxicity (IC50=0.073 µg/mL) among all the groups. In a subcutaneous HCT8/ADR tumor xenograft model, administration of the Man-liposomes resulted in a tumor inhibition rate of 88.59%, compared to that of 47.46% or 70.54%, respectively, for the treatment with free Dox or free Dox+DHA. The mechanisms underlying the anti-MDR effect of the Man-liposomes involved preferential nuclear accumulation of the therapeutic agents, enhanced cancer cell apoptosis, downregulation of Bcl-xl, and the induction of autophagy.


Asunto(s)
Antineoplásicos/farmacología , Artemisininas/farmacología , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Artemisininas/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/patología , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Relación Estructura-Actividad
8.
Acta Pharmacol Sin ; 37(8): 1110-20, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27292613

RESUMEN

AIM: Drug efflux-associated multidrug resistance (MDR) is a main obstacle to effective cancer chemotherapy. Large molecule drugs are not the substrates of P-glycoprotein, and can circumvent drug efflux and be retained inside cells. In this article we report a polymer-drug conjugate nanoparticulate system that can overcome MDR based on size-related exclusion effect. METHODS: Doxorubicin was coupled with the triblock polymeric material cell-penetrating TAT-PEG-poly(aspartic acid). The amphiphilic macromolecules (termed TAT-PEG-Asp8-Dox) could self-assemble into nanoparticles (NPs) in water. The antitumor activity was evaluated in drug-resistant human colon cancer HCT8/ADR cells in vitro and in nude mice bearing HCT8/ADR tumor. RESULTS: The self-assembling TAT-PEG-Asp8-Dox NPs were approximately 150 nm with a narrow particle size distribution, which not only increased the cellular uptake efficiency, but also bypassed P-glycoprotein-mediated drug efflux and improved the intracellular drug retention, thus yielding an enhanced efficacy for killing drug-resistant HCT8/ADR colon cancer cells in vitro. Importantly, the TAT-PEG-Asp8-Dox NPs enhanced the intranuclear disposition of drugs for grater inhibition of DNA/RNA biosynthesis. In nude mice bearing xenografted HCT8/ADR colon cancers, intravenous or peritumoral injection of TAT-PEG-Asp8-Dox NPs for 22 d effectively inhibited tumor growth. CONCLUSION: TAT-PEG-Asp8-Dox NPs can increase cellular drug uptake and intranuclear drug delivery and retain effective drug accumulation inside the cells, thus exhibiting enhanced anticancer activity toward the drug-resistant human colon cancer HCT8/ADR cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Portadores de Fármacos/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , ADN/biosíntesis , Doxorrubicina/administración & dosificación , Portadores de Fármacos/farmacocinética , Humanos , Ratones , Ratones Desnudos , Nanopartículas/química , Tamaño de la Partícula , Péptidos/química , Polietilenglicoles/química , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Small ; 11(2): 239-47, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24925046

RESUMEN

The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Epirrubicina/administración & dosificación , Compuestos Férricos/administración & dosificación , Nanopartículas del Metal , Neoplasias/tratamiento farmacológico , Piel/metabolismo , Materiales Biocompatibles , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/patología , Microambiente Tumoral
10.
Yao Xue Xue Bao ; 49(12): 1718-23, 2014 Dec.
Artículo en Chino | MEDLINE | ID: mdl-25920203

RESUMEN

To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.


Asunto(s)
Antineoplásicos/química , Péptidos de Penetración Celular/química , ADN/química , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Plásmidos
11.
Colloids Surf B Biointerfaces ; 49(2): 158-64, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16626948

RESUMEN

A defined change in formulation components affects the physical and chemical characteristics of cationic liposomes (CLs) carriers in many ways. Therefore, a great degree of control can be exercised over the structure by modifying the CLs with various materials, leading to new innovations for carrier improvement. In the present study, surface modifications of cationic liposomes with non-ionic surfactants--sorbitan monoesters serials (Span 85, 80, 40 and 20) were carried out for developing a new gene transfer carrier. Span modified cationic liposomes (Sp-CLs) were prepared by reverse phase evaporation method (RPV) and self-assemble complexes of antisense oligonucleotides/surfactant modifying cationic liposomes were prepared by auto-coacervation through electrostatic effect. Characterization of Sp-CLs and the self-assembled complex was performed by electron microscope, particle size, zeta potential, turbidity and agarose electrophoresis. Furthermore, in vitro cellular uptake experiment showed that Span plays a role in enhancing the cellular uptake of encapsulated oligonucleotides mediated by Sp-CLs by the endocytosis-dependent route. CLs modified with Span 40 significantly facilitated the cellular uptake by COS-7 cells and HeLa cells; also showed some positive effect on gene expression. That suggests it is a potential non-viral carrier for efficient gene transfer.


Asunto(s)
Vectores Genéticos/química , Liposomas/química , Tensoactivos/química , Cationes/química , Línea Celular , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Hexosas/química , Humanos , Microscopía Electrónica de Transmisión , Nefelometría y Turbidimetría
12.
Biol Pharm Bull ; 28(2): 387-90, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15684508

RESUMEN

Liposomes are an important colloidal carrier system for controlled drug delivery. However some highly hydrophilic small molecules are difficult to entrap into liposomes and store stably, resulting in poor encapsulation efficiency and fast leakage. In the present work, fluorescein sodium (FS) was used as a model drug that was loaded into chitosan nanoparticles and then encapsulated into liposomes by reverse-phase evaporation (RPV). The encapsulation efficiency, particle size, zeta potential, release in vitro and pharmacokinetics in rats were determined in order to characterize the novel drug delivery system. The entrapment efficiency was above 80% in nanoparticles (Np) and 95% in liposomes encapsulating the nanoparticles (Lip-Np). The Lip-Np was composed of soybean phospholipids, cholesterol and chitosan, which the average diameter was 202.6 nm and zeta potential was -34.8 mV. The release rate of fluorescein sodium from Lip-Np was slower than from Np and liposomes. FS in Lip-Np administered to rats exhibited prolonged circulation and higher bioavailability than FS in Np. The results indicated that liposomal release kinetics can be controlled by encapsulating nanoparticles and thus solid-cored liposomes can be used as a potential drug delivery system.


Asunto(s)
Quitosano/síntesis química , Liposomas/síntesis química , Nanoestructuras/química , Animales , Quitosano/farmacocinética , Liposomas/farmacocinética , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...