Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699272

RESUMEN

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

2.
J Am Chem Soc ; 146(3): 2167-2173, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214166

RESUMEN

Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.

3.
Nature ; 623(7989): 964-971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030779

RESUMEN

Plasmas can generate ultra-high-temperature reactive environments that can be used for the synthesis and processing of a wide range of materials1,2. However, the limited volume, instability and non-uniformity of plasmas have made it challenging to scalably manufacture bulk, high-temperature materials3-8. Here we present a plasma set-up consisting of a pair of carbon-fibre-tip-enhanced electrodes that enable the generation of a uniform, ultra-high temperature and stable plasma (up to 8,000 K) at atmospheric pressure using a combination of vertically oriented long and short carbon fibres. The long carbon fibres initiate the plasma by micro-spark discharge at a low breakdown voltage, whereas the short carbon fibres coalesce the discharge into a volumetric and stable ultra-high-temperature plasma. As a proof of concept, we used this process to synthesize various extreme materials in seconds, including ultra-high-temperature ceramics (for example, hafnium carbonitride) and refractory metal alloys. Moreover, the carbon-fibre electrodes are highly flexible and can be shaped for various syntheses. This simple and practical plasma technology may help overcome the challenges in high-temperature synthesis and enable large-scale electrified plasma manufacturing powered by renewable electricity.

4.
Nat Commun ; 14(1): 4607, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528075

RESUMEN

Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2 of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements.

5.
J Am Chem Soc ; 145(34): 19076-19085, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37606196

RESUMEN

Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.

6.
Nano Lett ; 23(16): 7733-7742, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37379097

RESUMEN

Electrochemical reduction of nitrate to ammonia (NH3) converts an environmental pollutant to a critical nutrient. However, current electrochemical nitrate reduction operations based on monometallic and bimetallic catalysts are limited in NH3 selectivity and catalyst stability, especially in acidic environments. Meanwhile, catalysts with dispersed active sites generally exhibit a higher atomic utilization and distinct activity. Herein, we report a multielement alloy nanoparticle catalyst with dispersed Ru (Ru-MEA) with other synergistic components (Cu, Pd, Pt). Density functional theory elucidated the synergy effect of Ru-MEA than Ru, where a better reactivity (NH3 partial current density of -50.8 mA cm-2) and high NH3 faradaic efficiency (93.5%) is achieved in industrially relevant acidic wastewater. In addition, the Ru-MEA catalyst showed good stability (e.g., 19.0% decay in FENH3 in three hours). This work provides a potential systematic and efficient catalyst discovery process that integrates a data-guided catalyst design and novel catalyst synthesis for a range of applications.

7.
ACS Nano ; 17(12): 11327-11334, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37293881

RESUMEN

Cryogenic four-dimensional scanning transmission electron microscopy (4D-STEM) imaging is a useful technique for studying quantum materials and their interfaces by simultaneously probing charge, lattice, spin, and chemistry on the atomic scale with the sample held at temperatures ranging from room to cryogenic. However, its applications are currently limited by the instabilities of cryo-stages and electronics. To overcome this challenge, we develop an algorithm to effectively correct the complex distortions present in atomic resolution cryogenic 4D-STEM data sets. This method uses nonrigid registration to identify localized distortions in a 4D-STEM and relate them to an undistorted experimental STEM image, followed by a series of affine transformations for distortion corrections. This method allows a minimum loss of information in both reciprocal and real spaces, enabling the reconstruction of sample information from 4D-STEM data sets. This method is computationally cheap, fast, and applicable for on-the-fly data analysis in future in situ cryogenic 4D-STEM experiments.

8.
Angew Chem Int Ed Engl ; 62(25): e202217439, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36859700

RESUMEN

A photocatalyst TiO2 /Ti-BPDC-Pt is developed with a self-grown TiO2 /Ti-metal-organic framework (MOF) heterojunction, i.e., TiO2 /Ti-BPDC, and selectively anchored high-density Pt single-atomic cocatalysts on Ti-BPDC for photocatalytic hydrogen evolution. This intimate heterojunction, growing from the surface pyrolytic reconstruction of Ti-BPDC, works in a direct Z-scheme, efficiently separating electrons and holes. Pt is selectively anchored on Ti-BPDC by ligands and is found in the form of single atoms with loading up to 1.8 wt %. The selective location of Pt is the electron-enriched domain of the heterojunction, which further enhances the utilization of the separated electrons. This tailored TiO2 /Ti-BPDC-Pt shows a significantly enhanced activity of 12.4 mmol g-1 h-1 compared to other TiO2 - or MOF-based catalysts. The structure-activity relationship further proves the balance of two simultaneously exposed domains of heterojunctions is critical to fulfilling this kind of catalyst.


Asunto(s)
Estructuras Metalorgánicas , Titanio , Ingeniería , Hidrógeno
9.
Angew Chem Int Ed Engl ; 62(5): e202217323, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36478096

RESUMEN

Supported Pd single atom catalysts (SACs) have triggered great research interest in methane combustion yet with contradicting views on their activity and stability. Here, we show that the Pd SAs can take different electronic structure and atomic geometry on ceria support, resulting in different catalytic properties. By a simple thermal pretreatment to ceria prior to Pd deposition, a unique anchoring site is created. The Pd SA, taking this site, can be activated to Pdδ+ (0<δ<2) that has greatly enhanced activity for methane oxidation: T50 lowered by up to 130 °C and almost 10 times higher turnover frequency compared to the untreated catalyst. The enhanced activity of Pdδ+ site is related to its oxygen-deficient local structure and elongated interacting distance with ceria, leading to enhanced capability in delivering reactive oxygen species and decomposing reaction intermediates. This work provides insights into designing highly efficient Pd SACs for oxidation reactions.

10.
J Am Chem Soc ; 145(4): 2553-2560, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576951

RESUMEN

We report a robust method for the facet-controlled synthesis of nanocrystals with an ultrathin shell made of a nearly equimolar RuRhPdPt quaternary alloy. Our strategy involves the use of well-defined Rh cubic seeds, halide-free precursors, and a method for precisely controlling the reaction kinetics of different precursors. In the setting of dropwise addition, the precursors with different reactivities can be reduced at about the same pace for the generation of an alloy with a uniform and well-controlled composition. The core-shell nanocubes show greatly enhanced activity toward ethanol oxidation when benchmarked against Pd and Pt counterparts. Combining in situ and ex situ electron microscopy studies, we also demonstrate that the core-shell nanocubes possess good thermal and electrochemical stability in terms of both geometrical shape and elemental composition, with their cubic shape and alloy composition retained when annealing at 500 °C or after long-term electrochemical cycling. It is expected that the synthetic approach can be further extended to fabricate multimetallic catalysts with enhanced activities toward a variety of thermal and electrochemical reactions.

11.
ACS Cent Sci ; 8(8): 1081-1090, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36032771

RESUMEN

Introducing transition-metal components to ceria (CeO2) is important to tailor the surface redox properties for a broad scope of applications. The emergence of high-entropy oxides (HEOs) has brought transformative opportunities for oxygen defect engineering in ceria yet has been hindered by the difficulty in controllably introducing transition metals to the bulk lattice of ceria. Here, we report the fabrication of ceria-based nanocrystals with surface-confined atomic HEO layers for enhanced catalysis. The increased covalency of the transition-metal-oxygen bonds at the HEO-CeO2 interface promotes the formation of surface oxygen vacancies, enabling efficient oxygen activation and replenishment for enhanced CO oxidation capabilities. Understanding the structural heterogeneity involving bulk and surface oxygen defects in nanostructured HEOs provides useful insights into rational design of atomically precise metal oxides, whose increased compositional and structural complexities give rise to expanded functionalities.

12.
JACS Au ; 2(5): 1096-1104, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647601

RESUMEN

Featuring high olefin selectivity, hexagonal boron nitride (h-BN) has emerged recently as an attractive catalyst for oxidative dehydrogenation of propane (ODHP). Herein, we report that dispersion of vanadium oxide onto BN facilitates the oxyfunctionalization of BN to generate more BO x active sites to catalyze ODHP via the Eley-Rideal mechanism and concurrently produce nitric oxide to initiate additional gas-phase radical chemistry and to introduce redox VO x sites to catalyze ODHP via the Mars-van Krevelen mechanism, all of which promote the catalytic performance of BN for ODHP. As a result, loading 0.5 wt % V onto BN has doubled the yield of light alkene (C2-C3) at 540-580 °C, and adding an appropriate concentration of NO in the reactants further enhances the catalytic performance. These results provide a potential strategy for developing efficient h-BN-based catalysts through coupling gas-phase and surface reactions for the ODHP process.

13.
Nat Commun ; 13(1): 3253, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668115

RESUMEN

Precise control of charge transfer between catalyst nanoparticles and supports presents a unique opportunity to enhance the stability, activity, and selectivity of heterogeneous catalysts. While charge transfer is tunable using the atomic structure and chemistry of the catalyst-support interface, direct experimental evidence is missing for three-dimensional catalyst nanoparticles, primarily due to the lack of a high-resolution method that can probe and correlate both the charge distribution and atomic structure of catalyst/support interfaces in these structures. We demonstrate a robust scanning transmission electron microscopy (STEM) method that simultaneously visualizes the atomic-scale structure and sub-nanometer-scale charge distribution in heterogeneous catalysts using a model Au-catalyst/SrTiO3-support system. Using this method, we further reveal the atomic-scale mechanisms responsible for the highly active perimeter sites and demonstrate that the charge transfer behavior can be readily controlled using post-synthesis treatments. This methodology provides a blueprint for better understanding the role of charge transfer in catalyst stability and performance and facilitates the future development of highly active advanced catalysts.

14.
iScience ; 25(5): 104214, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494219

RESUMEN

High-entropy oxides (HEOs) are an emerging class of advanced ceramic materials capable of stabilizing ultrasmall nanoparticle catalysts. However, their fabrication still relies on high-temperature thermal treatment methodologies affording nonporous architectures. Herein, we report a facile synthesis of single-phase, fluorite-structured HEO nanocrystals via an ultrasound-mediated co-precipitation strategy under ambient conditions. Within 15 min of ultrasound exposure, high-quality fluorite-structured HEO (CeHfZrSnErOx) was generated as ultrasmall-sized particles with high surface area and high oxygen vacancy concentration. Taking advantage of these unique structural features, palladium was introduced and stabilized in the form of highly dispersed Pd nanoclusters within the CeHfZrSnErOx architecture. Neither phase segregation of the CeHfZrSnErOx support nor Pd sintering was observed under thermal treatment up to 900°C. The as-afforded Pd/CeHfZrSnErOx catalyst exhibits good catalytic performance toward CO oxidation, outperforming Pd/CeO2 of the same Pd loading, which highlights the inherent advantage of CeHfZrSnErOx as carrier support over traditional oxides.

15.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35471032

RESUMEN

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

16.
Nat Commun ; 13(1): 1375, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296655

RESUMEN

Selective conversion of methane (CH4) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu2@C3N4) as advanced catalysts for CH4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H2O2) and oxygen (O2) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH4 with O2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu-1h-1. Mechanistic studies reveal that the high reactivity of Cu2@C3N4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C3N4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H2O2 and O2 activation in thermo- and photocatalysis, respectively.

17.
Adv Sci (Weinh) ; 9(8): e2104749, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35048561

RESUMEN

Due to tunable redox properties and cost-effectiveness, copper-ceria (Cu-CeO2 ) materials have been investigated for a wide scope of catalytic reactions. However, accurately identifying and rationally tuning the local structures in Cu-CeO2 have remained challenging, especially for nanomaterials with inherent structural complexities involving surfaces, interfaces, and defects. Here, a nanocrystal-based atom-trapping strategy to access atomically precise Cu-CeO2 nanostructures for enhanced catalysis is reported. Driven by the interfacial interactions between the presynthesized Cu and CeO2 nanocrystals, Cu atoms migrate and redisperse onto the CeO2 surface via a solid-solid route. This interfacial restructuring behavior facilitates tuning of the copper dispersion and the associated creation of surface oxygen defects on CeO2 , which gives rise to enhanced activities and stabilities catalyzing water-gas shift reaction. Combining soft and solid-state chemistry of colloidal nanocrystals provide a well-defined platform to understand, elucidate, and harness metal-support interactions. The dynamic behavior of the supported metal species can be further exploited to realize exquisite control and rational design of multicomponent nanocatalysts.

18.
Adv Mater ; 34(9): e2106436, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34875115

RESUMEN

Multi-elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA-oxide-carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2 and Cr2 O3 ) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long-term cycling (>370 hours) of a Li-O2 battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications.

19.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34806881

RESUMEN

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

20.
Adv Mater ; 33(49): e2104361, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632632

RESUMEN

Self-supporting 3D (SSD) carbon nitrides (UCN-X, X = 600-690; where X represents the pyrolytic temperature) consisting of curved layers, with plenty of wrinkles and enlarged size, are synthesized via a facile stepwise pyrolytic strategy. Such unique features of the SSD structure exhibiting dramatically improved charge mobility, extended π-conjugated aromatic system, and partial distortion of heptazine-based skeleton can not only keep the easier activation of the intrinsic π â†’  π* electronic transition but also awaken the n → π* electronic transition in carbon nitride. The n → π* electronic transition of UCN-X can be controllably tuned through changing the pyrolytic temperature, which can greatly extend the photoresponse range to 600 nm. More importantly, the change regularity of H2 evolution rates is highly positive, correlated with the change tendency of n → π* electronic transition in UCN-X, suggesting the positive contribution of n → π* electronic transition to enhancing photocatalytic activity. The UCN-670, with optimal structural and optical properties, presents enhanced H2 evolution rate up to 9230 µmol g-1 h-1 (Pt 1.1 wt%). This work realizes the synergistic optimization of optical absorption and exciton dissociation via fabricating an SSD structure. It offers a new strategy for the development of novel carbon nitride materials for efficient photocatalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...