Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
medRxiv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39281768

RESUMEN

We performed large-scale genome-wide gene-sleep interaction analyses of lipid levels to identify novel genetic variants underpinning the biomolecular pathways of sleep-associated lipid disturbances and to suggest possible druggable targets. We collected data from 55 cohorts with a combined sample size of 732,564 participants (87% European ancestry) with data on lipid traits (high-density lipoprotein [HDL-c] and low-density lipoprotein [LDL-c] cholesterol and triglycerides [TG]). Short (STST) and long (LTST) total sleep time were defined by the extreme 20% of the age- and sex-standardized values within each cohort. Based on cohort-level summary statistics data, we performed meta-analyses for the one-degree of freedom tests of interaction and two-degree of freedom joint tests of the main and interaction effect. In the cross-population meta-analyses, the one-degree of freedom variant-sleep interaction test identified 10 loci (P int <5.0e-9) not previously observed for lipids. Of interest, the ASPH locus (TG, LTST) is a target for aspartic and succinic acid metabolism previously shown to improve sleep and cardiovascular risk. The two-degree of freedom analyses identified an additional 7 loci that showed evidence for variant-sleep interaction (P joint <5.0e-9 in combination with P int <6.6e-6). Of these, the SLC8A1 locus (TG, STST) has been considered a potential treatment target for reduction of ischemic damage after acute myocardial infarction. Collectively, the 17 (9 with STST; 8 with LTST) loci identified in this large-scale initiative provides evidence into the biomolecular mechanisms underpinning sleep-duration-associated changes in lipid levels. The identified druggable targets may contribute to the development of novel therapies for dyslipidemia in people with sleep disturbances.

2.
Micromachines (Basel) ; 15(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39203676

RESUMEN

To enhance the performance of tubular microbubble generators, the Volume of Fluid (VOF) multiphase flow model in COMSOL Multiphysics was used to simulate the bubble fragmentation characteristics within a throttling hole microbubble generator. The effects of the inlet speed of the throttling hole pipe, the diameter of the throttling hole, and the length of the expansion section on bubble fragmentation performance were analyzed. The results indicated that an increase in the inlet speed of the throttling hole pipe gradually improved the bubble fragmentation performance. However, an increase in the throttling hole diameter significantly reduced the bubble fragmentation performance. Changes in the length of the expansion section had a minor impact on the bubble fragmentation performance. Experimental methods were used to verify the characteristics of bubble fragmentation, and it was found that the simulation and experimental results were consistent. This provides a theoretical basis and practical guidance for the design optimization of tubular microbubble generators.

3.
Biomed Mater ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39208839

RESUMEN

Binder jetting is a promising technology in the additive manufacturing of bone implants, particularly for printing brittle bioceramics that are susceptible to thermal residual stresses. However, challenges in this field include low strength and undesirable size changes due to post-sintering treatments, as well as the absence of necessary organic matter like Glycosaminoglycans, citric acid, etc. To address these issues, a novel approach was introduced using citric acid (CA) as a post-processing agent to enhance the mechanical performance of green samples and add organic matter, with boric acid (BA) as a control. A hydroxyapatite (HA) based powder mixed with 25 wt.% high-viscosity polyvinyl alcohol (PVA) was prepared and printed using a self-made printer with deionized water as the binder. The post-processing effects were analyzed in terms of mechanical properties and microstructure. The application of 5 wt.% CA solution increased the thickness of the PVA film between HA particles by 320.0%, leading to an increase in compressive strength (7.37 ± 0.28 MPa) and modulus (102.81 ± 6.74 MPa) by 840.7% and 1571.3%, respectively, achieving the mechanical standards for human trabecular bone. This work presents a simple and rapid room-temperature post-processing strategy for enhancing the mechanical properties of bone implants produced by binder jetting additive manufacturing.

4.
Alzheimers Dement ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115897

RESUMEN

INTRODUCTION: Clonal hematopoiesis of indeterminate potential (CHIP) and dementia disproportionately burden patients with chronic kidney disease (CKD). The association between CHIP and cognitive impairment in CKD patients is unknown. METHODS: We conducted time-to-event analyses in up to 1452 older adults with CKD from the Chronic Renal Insufficiency Cohort who underwent CHIP gene sequencing. Cognition was assessed using four validated tests in up to 6 years mean follow-up time. Incident cognitive impairment was defined as a test score one standard deviation below the baseline mean. RESULTS: Compared to non-carriers, CHIP carriers were markedly less likely to experience impairment in attention (adjusted hazard ratio [HR] [95% confidence interval {CI}] = 0.44 [0.26, 0.76], p = 0.003) and executive function (adjusted HR [95% CI] = 0.60 [0.37, 0.97], p = 0.04). There were no significant associations between CHIP and impairment in global cognition or verbal memory. DISCUSSION: CHIP was associated with lower risks of impairment in attention and executive function among CKD patients. HIGHLIGHTS: Our study is the first to examine the role of CHIP in cognitive decline in CKD. CHIP markedly decreased the risk of impairment in attention and executive function. CHIP was not associated with impairment in global cognition or verbal memory.

5.
Food Chem ; 460(Pt 2): 140544, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089023

RESUMEN

A novel antibacterial film based on arabinoxylan (AX) was prepared by introducing ferulic acid (FA) to AX through a laccase-catalyzed procedure. The ferulic acid-arabinoxylan conjugates (FA-AX conjugates) have been characterized. Results showed that FA was successfully grafted onto the AX chains by covalent linkages, likely through nucleophilic addition between O-Ph in the phenolic hydroxyl group of FA, or through Michael addition via O-quinone intermediates. FA-AX conjugates showed improved crystallinity, thermal stability, and rheological properties, as well as a distinct surface morphology, compared with those of native AX. Moreover, FA-AX conjugates exhibited enhanced antibacterial ability against Staphylococcus aureus, Escherichia coli, Shewanella sp., and Pseudomonas sp. Mechanistic studies revealed that the enhanced antibacterial ability was due to the penetration of bacterial membrane by the phenolic molecule and the steric effect of FA-AX conjugates. The study demonstrates that the laccase-induced grafting method was effective in producing FA-AX conjugates; we have demonstrated its antibacterial ability and great potential in prolonging the shelf life of fresh seafood products.


Asunto(s)
Antibacterianos , Ácidos Cumáricos , Xilanos , Xilanos/química , Xilanos/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Lacasa/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Bacterias/efectos de los fármacos
6.
Kidney Int ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098582

RESUMEN

A major challenge in prevention and early treatment of organ fibrosis is the lack of valuable tools to assess the evolving profibrotic maladaptive repair after injury in vivo in a non-invasive way. Here, using acute kidney injury (AKI) as an example, we tested the utility of fibroblast activation protein (FAP) imaging for dynamic assessment of maladaptive repair after injury. The temporospatial pattern of kidney FAP expression after injury was first characterized. Single-cell RNA sequencing and immunostaining analysis of patient biopsies were combined to show that FAP was specifically upregulated in kidney fibroblasts after AKI and was associated with fibroblast activation and chronic kidney disease (CKD) progression. This was corroborated in AKI mouse models, where a sustained and exaggerated kidney FAP upregulation was coupled to persistent fibroblast activation and a fibrotic outcome, linking kidney FAP level to post-insult maladaptive repair. Furthermore, using positron emission tomography (PET)/CT scanning with FAP-inhibitor tracers ([18F]FAPI-42, [18F]FAPT) targeting FAP, we demonstrated the feasibility of non-invasively tracking of maladaptive repair evolution toward kidney fibrosis. Importantly, a sustained increase in kidney [18F]FAPT (less hepatobiliary metabolized than [18F]FAPI-42) uptake reflected persistent kidney upregulation of FAP and characterized maladaptive repair after AKI. Kidney [18F]FAPT uptake at hour 2-day 7 correlated with kidney fibrosis 14 days after AKI. Similar changes in [18F]FAPI-42 PET/CT imaging were observed in patients with AKI and CKD progression. Thus, persistent kidney FAP upregulation after AKI was associated with maladaptive repair and a fibrotic outcome. Hence, FAP-specific PET/CT imaging enables dynamic visualization of maladaptive repair after AKI and prediction of kidney fibrosis within a clinically actionable window.

7.
Medicine (Baltimore) ; 103(27): e38826, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968486

RESUMEN

Using the novel inflammatory biomarker lymphocyte-to-monocyte ratio (LMR), this work aimed to look into any potential connections between LMR and prostate cancer (PCa). A cross-sectional research investigation was conducted on 7706 male participants involved in the National Health and Nutrition Examination Survey from 2001 to 2010. Multivariate logistic regression modeling investigated the relationship between LMR levels and PCa risk. Furthermore, threshold analysis, subgroup analysis, interaction testing, and smoothed curve fitting were carried out. A significant negative correlation was seen between LMR and PCa risk (OR = 0.79, 95% CI: 0.65-0.97, P = .0002), even after controlling for potential confounding factors. A significant nonlinear negative correlation with a threshold effect and a breakpoint of 4.86 was found by smooth curve fitting between LMR and PCa. Subgroup analysis revealed a significant interaction (P for interaction = 0.0448) between the negative correlation between PCa and LMR about hypertension. Moreover, additional stratified smoothed curve fitting demonstrated a statistically significant inverse relationship between PCa risk and LMR. According to our findings, there is a substantial inverse relationship between PCa risk and LMR level. The inflammatory response-related index is quick, easy to use, and offers some clinical references. However, more extensive prospective investigations are required to confirm the involvement of LMR levels in PCa.


Asunto(s)
Linfocitos , Monocitos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/diagnóstico , Estudios Transversales , Persona de Mediana Edad , Anciano , Encuestas Nutricionales , Recuento de Linfocitos , Factores de Riesgo , Adulto , Recuento de Leucocitos , Modelos Logísticos
8.
Hypertension ; 81(9): 1966-1975, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39005213

RESUMEN

BACKGROUND: The blood pressure (BP) etiologic study is complex due to multifactorial influences, including genetic, environmental, lifestyle, and their intricate interplays. We used a metabolomics approach to capture internal pathways and external exposures and to study BP regulation mechanisms after well-controlled dietary interventions. METHODS: In the ProBP trail (Protein and Blood Pressure), a double-blinded crossover randomized controlled trial, participants underwent dietary interventions of carbohydrate, soy protein, and milk protein, receiving 40 g daily for 8 weeks, with 3-week washout periods. We measured plasma samples collected at baseline and at the end of each dietary intervention. Multivariate linear models were used to evaluate the association between metabolites and systolic/diastolic BP. Nominally significant metabolites were examined for enriching biological pathways. Significant ProBP findings were evaluated for replication among 1311 participants of the BHS (Bogalusa Heart Study), a population-based study conducted in the same area as ProBP. RESULTS: After Bonferroni correction for 77 independent metabolite clusters (α=6.49×10-4), 18 metabolites were significantly associated with BP at baseline or the end of a dietary intervention, of which 11 were replicated in BHS. Seven emerged as novel discoveries, which are as follows: 1-linoleoyl-GPE (18:2), 1-oleoyl-GPE (18:1), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2), 1-palmitoyl-2-oleoyl-GPE (16:0/18:1), maltose, N-stearoyl-sphinganine (d18:0/18:0), and N6-carbamoylthreonyladenosine. Pathway enrichment analyses suggested dietary protein intervention might reduce BP through pathways related to G protein-coupled receptors, incretin function, selenium micronutrient network, and mitochondrial biogenesis. CONCLUSIONS: Seven novel metabolites were identified to be associated with BP at the end of different dietary interventions. The beneficial effects of protein interventions might be mediated through specific metabolic pathways.


Asunto(s)
Presión Sanguínea , Estudios Cruzados , Hipertensión , Humanos , Masculino , Femenino , Presión Sanguínea/fisiología , Método Doble Ciego , Hipertensión/dietoterapia , Hipertensión/fisiopatología , Persona de Mediana Edad , Adulto , Metabolómica/métodos , Carbohidratos de la Dieta/metabolismo
9.
Res Sq ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39070651

RESUMEN

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.

10.
Cell Death Dis ; 15(6): 389, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830896

RESUMEN

Apolipoprotein O (APOO) plays a critical intracellular role in regulating lipid metabolism. Here, we investigated the roles of APOO in metabolism and atherogenesis in mice. Hepatic APOO expression was increased in response to hyperlipidemia but was inhibited after simvastatin treatment. Using a novel APOO global knockout (Apoo-/-) model, it was found that APOO depletion aggravated diet-induced obesity and elevated plasma cholesterol levels. Upon crossing with low-density lipoprotein receptor (LDLR) and apolipoprotein E (APOE) knockout hyperlipidemic mouse models, Apoo-/- Apoe-/- and Apoo-/- Ldlr-/- mice exhibited elevated plasma cholesterol levels, with more severe atherosclerotic lesions than littermate controls. This indicated the effects of APOO on cholesterol metabolism independent of LDLR and APOE. Moreover, APOO deficiency reduced cholesterol excretion through bile and feces while decreasing phospholipid unsaturation by inhibiting NRF2 and CYB5R3. Restoration of CYB5R3 expression in vivo by adeno-associated virus (AAV) injection reversed the reduced degree of phospholipid unsaturation while decreasing blood cholesterol levels. This represents the first in vivo experimental validation of the role of APOO in plasma cholesterol metabolism independent of LDLR and elucidates a previously unrecognized cholesterol metabolism pathway involving NRF2/CYB5R3. APOO may be a metabolic regulator of total-body cholesterol homeostasis and a target for atherosclerosis management. Apolipoprotein O (APOO) regulates plasma cholesterol levels and atherosclerosis through a pathway involving CYB5R3 that regulates biliary and fecal cholesterol excretion, independently of the LDL receptor. In addition, down-regulation of APOO may lead to impaired mitochondrial function, which in turn aggravates diet-induced obesity and fat accumulation.


Asunto(s)
Colesterol , Factor 2 Relacionado con NF-E2 , Receptores de LDL , Animales , Receptores de LDL/metabolismo , Colesterol/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Ratones Noqueados , Ratones Endogámicos C57BL , Metabolismo de los Lípidos , Masculino , Aterosclerosis/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/genética , Humanos , Hígado/metabolismo , Apolipoproteínas E/metabolismo , Hiperlipidemias/metabolismo
12.
medRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496537

RESUMEN

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

13.
Physiol Meas ; 45(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38430568

RESUMEN

Objective. In previous studies, the factors affecting the accuracy of imaging photoplethysmography (iPPG) heart rate (HR) measurement have been focused on the light intensity, facial reflection angle, and motion artifacts. However, the factor of specularly reflected light has not been studied in detail. We explored the effect of specularly reflected light on the accuracy of HR estimation and proposed an estimation method for the direction of specularly radiated light.Approach. To study the HR measurement accuracy influenced by specularly reflected light, we control the component of specularly reflected light by controlling its angle. A total of 100 videos from four different reflected light angles were collected, and 25 subjects participated in the dataset collection. We extracted angles and illuminations for 71 facial regions, fitting sample points through interpolation, and selecting the angle corresponding to the maximum weight in the fitted curve as the estimated reflected angle.Main results. The experimental results show that higher specularly reflected light compromises HR estimation accuracy under the same value of light intensity. Notably, at a 60° angle, the HR accuracy (ACC) increased by 0.7%, while the signal-to-noise ratio and Pearson correlation coefficient increased by 0.8 dB and 0.035, respectively, compared to 0°. The overall root mean squared error, standard deviation, and mean error of our proposed reflected light angle estimation method on the illumination multi-angle incidence (IMAI) dataset are 1.173°, 0.978°, and 0.773°. The average Pearson value is 0.8 in the PURE rotation dataset. In addition, the average ACC of HR measurements in the PURE dataset is improved by 1.73% in our method compared to the state-of-the-art traditional methods.Significance. Our method has great potential for clinical applications, especially in bright light environments such as during surgery, to improve accuracy and monitor blood volume changes in blood vessels.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Humanos , Frecuencia Cardíaca/fisiología , Fotopletismografía/métodos , Rotación , Artefactos , Algoritmos
14.
Nat Commun ; 15(1): 2581, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519484

RESUMEN

Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Femenino , Carcinoma Hepatocelular/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular , Células Mieloides/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inmunosupresores , Inflamación/patología
15.
Nat Commun ; 15(1): 450, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200015

RESUMEN

Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.


Asunto(s)
Bacteriófagos , Ácidos Nucleicos , NAD , ARN Guía de Sistemas CRISPR-Cas , Proteínas Argonautas/genética , Bacteriófagos/genética
16.
Cancer Lett ; 585: 216638, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38266805

RESUMEN

Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1ß-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo
17.
J Sci Food Agric ; 104(4): 2477-2483, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968892

RESUMEN

BACKGROUND: Wheat gluten (WG) containing gliadin and glutenin are considered the main allergens in wheat allergy as a result of their glutamine-rich peptides. Deamidation is a viable and efficient approach for protein modifications converting glutamine into glutamic acid, which may have the potential for allergenicity reduction of WG. RESULTS: Deamidation by citric acid was performed to investigate the effects on structure, allergenicity and noodle textural properties of wheat gluten (WG). WG was heated at 100 °C in 1 m citric acid to yield deamidated WG with degrees of deamidation (DD) ranging from DWG-25 (25% DD) to DWG-70 (70% DD). Fourier-transform infrared and intrinsic fluorescence spectroscopy results suggested the unfolding of WG structure during deamidation, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed molecular weight shifts at the 35-63 kDa region, suggesting that the deamidation mainly occurred on low molecular weight glutenin subunits and γ- gliadin of the WG. An enzyme-linked immunosorbent assay of deamidated WG revealed a decrease in absorbance and immunoblotting indicated that the intensities of protein bands at 35-63 kDa decreased, which suggested that deamidation of WG might have caused a greater loss of epitopes than the generation of new epitopes caused by unfolding of WG, and thereby reduction of the immunodominant immunoglobulin E binding capacity, ultimately leading to the decrease in allergenicity. DWG-25 was used in the preparation of recombinant hypoallergenic noodles, and the hardness, elasticity, chewiness and gumminess were improved significantly by the addition of azodicarbonamide. CONCLUSION: The present shows the potential for deamidation of the WG products used in novel hypoallergenic food development. © 2023 Society of Chemical Industry.


Asunto(s)
Gliadina , Hipersensibilidad al Trigo , Humanos , Alérgenos/química , Glutamina , Glútenes/química , Epítopos/química , Ácido Cítrico
18.
Clin Transl Med ; 13(12): e1498, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037461

RESUMEN

BACKGROUND: Endothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined. METHODS: We combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC-selective blockade of glycolysis by genetic or pharmacological inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end-stage kidney disease (ESKD). RESULTS: In a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose-treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid-induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE-cadherin endocytosis and monocyte-adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction. CONCLUSIONS: These findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.


Asunto(s)
Células Endoteliales , Diálisis Peritoneal , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular , Endotelio/metabolismo , Diálisis Peritoneal/efectos adversos , Glucólisis , Modelos Animales de Enfermedad
19.
Front Endocrinol (Lausanne) ; 14: 1220957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920254

RESUMEN

Hypertriglyceridemia-induced acute pancreatitis seldom occurs in the second trimester of pregnancy with gestational diabetes mellitus. For these patients, the existing knowledge on concomitant hyperglycemia is not sufficient. We report a case of abruptio placentae and epileptic seizure following perinatal hyperglycaemia in woman with gestational diabetes mellitus and hypertriglyceridemia-induced acute pancreatitis. The occurrence of abruptio placentae and epileptic seizure may be associated with concomitant hyperglycemia, and the epileptic seizure was terminated after she underwent treatment with insulin. We should pay more attention to the adverse effects of perinatal hyperglycemia and continue to give appropriate insulin treatment even if patients have passed the acute phase of hypertriglyceridemia-induced acute pancreatitis.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Diabetes Gestacional , Epilepsia , Hiperglucemia , Hipertrigliceridemia , Pancreatitis , Embarazo , Femenino , Humanos , Desprendimiento Prematuro de la Placenta/etiología , Hiperglucemia/complicaciones , Enfermedad Aguda , Pancreatitis/complicaciones , Convulsiones , Hipertrigliceridemia/complicaciones , Epilepsia/complicaciones , Insulina
20.
Atherosclerosis ; 386: 117374, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37995600

RESUMEN

BACKGROUND AND AIMS: Recent studies have suggested that MIC26 (apolipoprotein O, APOO), a novel mitochondrial inner membrane protein, is involved in inflammation. Thus, the role of macrophage MIC26 in acute inflammation and chronic inflammatory disease atherosclerosis was investigated. METHODS: Macrophage-specific MIC26 knockout mice (MIC26LysM) were generated by crossing Apooflox/flox and LysMcre+/- mice. An endotoxemia mouse model was generated to explore the effects of macrophage MIC26 deficiency on acute inflammation, while an atherosclerosis mouse model was constructed by crossing MIC26LysM mice with Apoe-/- mice and challenged with a Western diet. Atherosclerotic plaques, primary macrophage function, and mitochondrial structure and function were analyzed. RESULTS: MIC26 knockout did not affect the median survival time and post-injection serum interleukin 1ß concentrations in mice with endotoxemia. Mice with MIC26 deficiency in an Apoe-/- background had smaller atherosclerotic lesions and necrotic core than the control group. In vitro studies found that the loss of MIC26 did not affect macrophage polarization, apoptosis, or lipid handling capacity, but increased efferocytosis (the ability to clear apoptotic cells). An in situ efferocytosis assay of plaques also showed that the ratio of macrophage-associated apoptotic cells to free apoptotic cells was higher in the MIC26-deficient group than in the control group, indicating increased efferocytosis. In addition, an in vivo thymus efferocytosis assay indicated that MIC26 deletion promoted efferocytosis. Mechanistically, the loss of MIC26 resulted in an abnormal mitochondrial inner membrane structure, increased mitochondrial fission, and decreased mitochondrial membrane potential. Loss of MIC26 reduced mitochondria optic atrophy type 1 (OPA1) protein, and OPA1 silencing in macrophages promoted efferocytosis. Overexpression of OPA1 abolished the increase in efferocytosis produced by MIC26 deficiency. CONCLUSIONS: Macrophage MIC26 deletion alleviated advanced atherosclerosis and necrotic core expansion by promoting efferocytosis. This mechanism may be related to the increased mitochondrial fission caused by reduced mitochondrial OPA1.


Asunto(s)
Aterosclerosis , Animales , Ratones , Apolipoproteínas E , Apoptosis , Aterosclerosis/genética , Aterosclerosis/metabolismo , Endotoxemia/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA