Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Fitoterapia ; 175: 105967, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631597

RESUMEN

Sulfur-containing natural products possess a variety of biological functions including antitumor, antibacterial, anti-inflammatory and antiviral activities. In this study, four previously undescribed sulfur-containing compounds asperteretals L and M, terreins A and B, together with 17 known compounds were obtained from a culture of marine fungus A. terreus supplemented with inorganic sulfur source Na2SO4. Their planar structures and absolute configurations were elucidated by NMR, HRESIMS, and ECD experiments. The in vitro cytotoxicities of compounds 1-21 against HCT-116 and Caco-2 were evaluated by SRB assay. Asperteretal M (2) exhibited activity against HCT-116 with the IC50 value at 30µM. The antiproliferative effect of asperteretal M was confirmed by colony formation assay and cell death staining. Furthermore, the preliminary study on the anti-colon cancer mechanism of asperteretal M was performed by RNA-seq analysis. Western blotting validated that asperteretal M significantly decreased the expression of cell-cycle regulatory proteins CDK1, CDK4, and PCNA in a concentration-dependent manner.

2.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338430

RESUMEN

(1) Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the second most common cause of cancer death. However, effective anti-CRC drugs are still lacking in clinical settings. This article investigated the anti-proliferative effect of involucrasin B on CRC Caco-2 cells. (2) Methods: This study employed a sulforhodamine B (SRB) method, colony formation experiments, flow cytometry, FastFUCCI assay, dual luciferase assay, and Western blot analysis for the investigation. (3) Results: The SRB method and colony formation experiments showed that involucrasin B exhibited an inhibitory effect on the Caco-2 cells cultured in vitro. Subsequently, the flow cytometry, FastFUCCI assay, and Western blotting results showed that involucrasin B induced cell cycle arrest in the G1 phase dose-dependently. Involucrasin B significantly enhanced the TGFß RII protein level and SMAD3 phosphorylation, thus inhibiting the expression of CDK4 and cyclin D1 and causing G1 cell cycle arrest. (4) Conclusion: This study shows that involucrasin B exerts its anti-proliferative effect by regulating the TGFß/SMAD2-3-4 pathway to cause G1 cycle arrest in Caco-2 cells.


Asunto(s)
Factor de Crecimiento Transformador beta , Humanos , Células CACO-2 , Fosforilación , Puntos de Control de la Fase G1 del Ciclo Celular , Proliferación Celular , Factor de Crecimiento Transformador beta/farmacología , Línea Celular Tumoral , Proteína Smad2
3.
Sci Rep ; 14(1): 1420, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228728

RESUMEN

Anomaly detection is a highly important task in the field of data analysis. Traditional anomaly detection approaches often strongly depend on data size, structure and features, while introducing the idea of ensemble into anomaly detection can greatly improve the generalization ability. Ensemble-based anomaly detection methods still face some challenges, however, such as data imbalance, time and space demand and the selection of base detectors. To this end, we propose a selective ensemble method for anomaly detection based on parallel learning (SEAD-PL). First, a differentiated stratified sampling method is designed to alleviate the problem of data imbalance. Then, a distributed parallel training frame is built to address the problem of excessive time and space consumption for base detector training. Finally, a clustering-based ensemble selection strategy is introduced to balance the accuracy and diversity of base detectors. Experiments are performed on six datasets, which demonstrate that the proposed method has obvious advantages over four selected methods.

4.
NPJ Parkinsons Dis ; 9(1): 163, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092812

RESUMEN

Retinal thickness is related to Parkinson's disease (PD), but its association with the severity of PD is still unclear. We conducted a Mendelian randomized (MR) study to explore the association between retinal thickness and PD. For the two-sample MR analysis, the summary statistics obtained from genome-wide association studies on the thickness of Retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) were employed as exposure, while the summary statistics associated with PD were used as the outcome. The primary approach utilized was inverse variance weighted. To correct for multiple testing, the false discovery rate (FDR) was employed. For sensitivity analysis, an array of robust MR methods was utilized. We found genetically predicted significant association between reduced RNFL thickness and a reduced risk of constipation in PD (odds ratio [OR] = 0.854, 95% confidence interval [CI] (0.782, 0.933), P < 0.001, FDR-corrected P = 0.018). Genetically predicted reduced RNFL thickness was associated with a reduced Unified Parkinson's Disease Rating Scale total score (ß = -0.042, 95% CI (-0.079, 0.005), P = 0.025), and reduced GCIPL thickness was associated with a lower risk of constipation (OR = 0.901, 95% CI (0.821, 0.988), P = 0.027) but a higher risk of depression (OR = 1.103, 95% CI (1.016, 1.198), P = 0.020), insomnia (OR = 1.090, 95% CI (1.013, 1.172), P = 0.021), and rapid eye movement sleep behaviour disorder (RBD) (OR = 1.198, 95% CI (1.061, 1.352), P = 0.003). In conclusion, we identify an association between retinal thickness and non-motor symptoms (constipation, depression, insomnia and RBD) in PD, highlighting the potential of retinal thickness as a biomarker for PD nonmotor symptoms.

5.
Aging Dis ; 14(1): 204-218, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818554

RESUMEN

Parkinson's disease (PD) and atypical parkinsonism (AP), including progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), share similar nonmotor symptoms. Quantitative electroencephalography (QEEG) can be used to examine the nonmotor symptoms. This study aimed to characterize the patterns of QEEG and functional connectivity (FC) that differentiate PD from PSP or MSA, and explore the correlation between the differential QEEG indices and nonmotor dysfunctions in PD and AP. We enrolled 52 patients with PD, 31 with MSA, 22 with PSP, and 50 age-matched health controls to compare QEEG indices among specific brain regions. One-way analysis of variance was applied to assess QEEG indices between groups; Spearman's correlations were used to examine the relationship between QEEG indices and nonmotor symptoms scale (NMSS) and mini-mental state examination (MMSE). FCs using weighted phase lag index were compared between patients with PD and those with MSA/PSP. Patients with PSP revealed higher scores on the NMSS and lower MMSE scores than those with PD and MSA, with similar disease duration. The delta and theta powers revealed a significant increase in PSP, followed by PD and MSA. Patients with PD presented a significantly lower slow-to-fast ratio than those with PSP in the frontal region, while patients with PD presented significantly higher EEG-slowing indices than patients with MSA. The frontal slow-to-fast ratio showed a negative correlation with MMSE scores in patients with PD and PSP, and a positive correlation with NMSS in the perception and mood domain in patients with PSP but not in those with PD. Compared to PD, MSA presented enhanced FC in theta and delta bands in the posterior region, while PSP revealed decreased FC in the delta band within the frontal-temporal cortex. These findings suggest that QEEG might be a useful tool for evaluating the nonmotor dysfunctions in PD and AP. Our QEEG results suggested that with similar disease duration, the cortical neurodegenerative process was likely exacerbated in patients with PSP, followed by those with PD, and lastly in patients with MSA.

6.
Anat Rec (Hoboken) ; 306(12): 3006-3020, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-35446511

RESUMEN

Atractylodeslancea Rhizoma (Rhizoma atractylodis [RA]) has long been recommended for the treatment of arthritis in traditional Chinese medicine, but its mechanism of action is still unclear. RA contains a large amount of Atractylodes lancea volatile oils (Atr). In this study, we investigated whether Atr can promote mesenchymal stem cells (MSCs) chondrogenic differentiation. The Atr were extracted from RA by steam distillation method, and the effect of Atr on MSCs was detected by the CCK8 assay. The optimal concentration of Atr for MSCs cultivation was 3 µg/ml. The differentially expressed miR-181a-5p was screened by miRNA microarray assay, and its mimics and inhibitors were transfected into MSCs. It was found that the inhibitor of miR-181a-5p could upregulate cartilage-specific genes such as SOX9, COL2A1, and ACAN. Meanwhile, we also found that the expression of gene editing enzyme ADAR2 was significantly increased in the chondrogenic differentiation of MSCs induced by Atr, and the bases of precursor sequence of miR-181a-5p were changed from A to G. After ADAR2 deletion, the expression of cartilage-specific genes was significantly down-regulated and the precursor sequence bases of miR-181a-5p were not changed. Bioinformatics analysis revealed that the predicted target gene of miR-181a-5p was yingyang1 (YY1), and the targeting relationship was verified by dual-luciferase reporter assay. After deleting YY1, the expression of cartilage-specific genes was significantly down-regulated. In conclusion, our study demonstrated that Atr can promote chondrogenic differentiation of MSC through regulation of the ADAR2-miR-181a-5p signaling pathway. This may provide a new insight into the possible mechanism of traditional Chinese medicine (Atr) in treating inflammatory joint diseases.


Asunto(s)
Atractylodes , Células Madre Mesenquimatosas , MicroARNs , Atractylodes/genética , Atractylodes/metabolismo , MicroARNs/metabolismo , Diferenciación Celular , Transducción de Señal/genética
7.
Front Nutr ; 9: 1013466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337615

RESUMEN

The disease of type 2 diabetes mellitus (T2DM) is principally induced by insufficient insulin secretion and insulin resistance. In the current study, Sanghuangporus vaninii fruit body polysaccharide (SVP) was prepared and structurally characterized. It was shown that the yield of SVP was 1.91%, and SVP mainly contains small molecular weight polysaccharides. Afterward, the hypoglycemic and hypolipidemic effects and the potential mechanism of SVP in T2DM mice were investigated. The results exhibited oral SVP could reverse the body weight loss, high levels of blood glucose, insulin resistance, hyperlipidemia, and inflammation in T2DM mice. Oral SVP increased fecal short-chain fatty acids (SCFAs) concentrations of T2DM mice. Additionally, 16S rRNA sequencing analysis illustrated that SVP can modulate the structure and function of intestinal microflora in T2DM mice, indicating as decreasing the levels of Firmicutes/Bacteroidetes, Flavonifractor, Odoribacter, and increasing the levels of Weissella, Alloprevotella, and Dubosiella. Additionally, the levels of predicted metabolic functions of Citrate cycle, GABAergic synapse, Insulin signaling pathway were increased, and those of Purine metabolism, Taurine and hypotaurine metabolism, and Starch and sucrose metabolism were decreased in intestinal microflora after SVP treatment. These findings demonstrate that SVP could potentially play hypoglycemic and hypolipidemic effects by regulating gut microflora and be a promising nutraceutical for ameliorating T2DM.

8.
Front Psychiatry ; 13: 936283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911213

RESUMEN

The Mediterranean diet (MED), a dietary pattern rich in fruits and vegetables, whole grains, legumes, nuts, fish, and olive oil, has anti-oxidative and anti-inflammatory effects. Although some data suggest that MED adherence is associated with decreased manifestation of depressive symptoms, it remains necessary to further analyze this apparent non-linear association as well as the influence of different factors on the relationship between MED and depression. Here, we investigated associations between the alternate MED (aMED) score and depressive symptom via multivariate logistic regression, weighted generalized additive (GAM) and two-step linear regression models, analyzing data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES). The most important factor relevant to aMED score that contributed to the prevalence of depressive symptom was assessed using random forest. Furthermore, we examined whether the relationship between aMED score and depressive symptom differs by age, race, sex, socioeconomic variables, lifestyle- and health-related variables, and chronic medical conditions, via subgroup analyses. A total of 19,477 participants (20-80 years of age) were included in this cross-sectional study. In crude and adjusted (1-5) multivariate logistic regression models, increased aMED score was noted to associate with non-depressive status, as defined using the Patient Health Questionnaire-9 (P < 0.05). Data analyses via GAM and two-piecewise linear regression revealed a non-linear association between aMED and depressive symptom, which had an inflection point of 3. Random forest results revealed that vegetable score contributes greatest to the relationship between aMED and depressive symptom. Subgroup analyses revealed that aMED score is significantly negatively related with depressive symptom in most different populations (P < 0.05) with the exception of high annual income, diabetes, borderline blood glucose level and Parkinson's disease (PD) (P > 0.05). In conclusion, we observed a non-linear association between aMED score and depressive symptom. Further studies are needed to validate our results.

9.
Oxid Med Cell Longev ; 2022: 5392966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979400

RESUMEN

Chronic cerebral hypoperfusion (CCH) is a cardinal risk factor for Parkinson's disease dementia (PDD), but this potential causality lacks mechanistic evidence. We selected bilateral common carotid artery occlusion (BCCAO) to simulate chronic cerebral hypoperfusion in the rat model of PD induced by typical neurotoxin 6-hydroxy dopamine (6-OHDA). Four weeks after unilateral injection of 6-OHDA into the medial forebrain bundle, rats underwent BCCAO. Male Sprague-Dawley rats were divided into five groups of ten, including sham, PD+BCCAO 2 weeks, PD+BCCAO 1 week, PD, and BCCAO 2 weeks. Then, open field test (OFT) and Morris water maze test (MWM) were used to assess the PDD-like symptoms in rats. Also, the pathological manifestations and mechanisms of BCCAO impairing cognitive functions have been explored via hematoxylin-eosin staining, Nissl staining, immunohistochemistry, immunofluorescence, RNA sequencing analysis, lipidomics, and quantitative real-time polymerase chain reaction. In this study, we found that CCH could aggravate PDD-like cognitive symptoms (i.e., learning memory and spatial cognition) and PDD-like pathology (higher expression of α-Syn and Aß in prefrontal cortex and striatum). Moreover, a potential relationship between differentially expressed mRNAs and lipid metabolism was revealed by RNA sequencing analysis. Lipidomics showed that CCH could affect the intensity of 5 lipids, including sphingomyelin (SM 9:0;2O/26:2; SM 8:1;2O/25:0; and SM 8:0;2O/28:4), cardiolipin, lysophosphatidylcholine, cholesteryl ester, and triacylglycerol. Interestingly, the KEGG pathway analysis of both RNA sequencing analysis and lipidomics suggested that CCH leaded to learning impairment by affecting sphingolipid metabolism. Finally, we found that CCH disrupts the sphingolipid metabolism by affecting the mRNA expression of SMPD1 and SMS2, leading to the accumulation of sphingomyelin in the prefrontal cortex. In summary, CCH, an independent exacerbating reason for impairment in learning and memory within the pathopoiesis of PD, aggravates Parkinson's disease dementia-like symptoms and pathology in 6-OHDA-lesioned rat through interfering with sphingolipid metabolism.


Asunto(s)
Enfermedad de Alzheimer , Isquemia Encefálica , Demencia , Enfermedad de Parkinson , Enfermedad de Alzheimer/metabolismo , Animales , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Masculino , Aprendizaje por Laberinto , Oxidopamina , Enfermedad de Parkinson/etiología , Ratas , Ratas Sprague-Dawley , Esfingomielinas
10.
Oxid Med Cell Longev ; 2022: 3910116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873798

RESUMEN

Insulin resistance is the major factor involved in the pathogenesis of type 2 diabetes. Although the oral drug metformin (MH) is widely used to reduce hyperglycemia, it is associated with adverse effects. Therefore, there is an urgent need to search for safe and natural foods that do not cause adverse effects as alternatives to commercial drugs. In this study, the active substances from Spirulina platensis, Grifola frondosa, Panax ginseng, and chromium-rich yeast were used to obtain Spirulina functional formulations (SFFs), and its therapeutic effects on mice with glycolipid metabolism disorder (GLD) were investigated. Results showed that SFFs not only improved glycolipid metabolism and reduced inflammation in mice with GLD but also showed good regenerative effects on the liver, jejunum, and cecum tissues. Moreover, SFFs could inhibit the growth of harmful microbes in the intestine and promote the proliferation of beneficial bacteria, thereby promoting the production of short-chain fatty acids and further regulating GLD. Additionally, SFFs significantly increased the expression of INS, INSR, IRS-1, PI3K, AKT-1, and GLUT-4 genes and significantly decreased that of GSK-3ß in the INS/PI3K/GLUT-4 signaling pathway. Therefore, the findings of this study suggest that SFFs can be further developed as a new class of therapeutic agents against GLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Spirulina , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucolípidos/metabolismo , Glucolípidos/farmacología , Hígado/metabolismo , Medicina Tradicional China , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
Oxid Med Cell Longev ; 2022: 5463134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571244

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in the elderly, which is related to brain iron metabolism disorders. Ferroptosis is a newly discovered iron-dependent programmed cell death mode, which has been considered an essential mechanism of PD pathogenesis in recent years. However, its underlying mechanisms have not been fully understood. In the present study, the PD rat model and PD cell model were induced by 6-hydroyxdopamine (6-OHDA). The results showed that the expression of Sorting Nexin 5 (SNX5) and the level of ferroptosis will increase after treatment with 6-OHDA. Consistent with these results, ferroptosis inducer erastin synergistically reduced the expression of glutathione peroxidase 4 (GPX4) and increased the expression of SNX5 in the PD cell model, while ferroptosis inhibitor ferrostatin-1 (Fer-1) inhibited the decrease of GPX4 and the increase of SNX5 in the PD cell model. Knockdown of SNX5 in PC-12 cells could reduce intracellular lipid peroxidation and accumulation of Fe2+ and significantly inhibit the occurrence of ferroptosis. In conclusion, the present study suggested that SNX5 promotes ferroptosis in the PD model, thus providing new insights and potential for research on the pharmacological targets of PD.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Oxidopamina , Enfermedad de Parkinson/patología , Ratas , Nexinas de Clasificación/genética
12.
Int J Biol Macromol ; 195: 309-316, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34902443

RESUMEN

Resistant starch (RS) is a kind of important carbon source for colonic microorganisms. Its structure-function relationship is helpful to understand the mechanism of dietary nutrition in the body. In this paper, lotus seed resistant starches (LRS) prepared by microwave-power method (MP-LRS3-1 and MP-LRS3-2) and water-bath method (WB-LRS3-1 and WB-LRS3-2) were used to determine the structural changes and establish their nutritional interactions with Bifidobacterium breve. The results showed that four types all formed scale- and gully-like surface microstructures, B-type crystal structures, and lightly variable double helix structures. However, greater diffraction peak intensity was observed of MP-LRS3 at 18° and 19° compared with WB-LRS3, and higher crystallinity and tighter double helix were detected in MP-LRS3-1 than others. Meanwhile, MP-LRS3-1 showed the most effective proliferation promoting capability and highest adhesion value to B. breve. It might be related to specific surface microstructure and crystallinity differences of LRS caused by different preparing methods. There was also a positive correlation between the adhesion and the ability to promote proliferation, and it could be speculated this structural difference makes MP-LRS3-1 having highest adhesion ability and the most proliferative effect. This result can provide theoretical bases for improving the metabolism and probiotic action of RS.


Asunto(s)
Adhesión Bacteriana/fisiología , Bifidobacterium breve/metabolismo , Almidón Resistente/metabolismo , Adhesión Celular/fisiología , Lotus/metabolismo , Espectroscopía de Resonancia Magnética , Fenómenos Físicos , Prebióticos/análisis , Probióticos/análisis , Semillas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química
13.
Front Immunol ; 12: 794770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925379

RESUMEN

Background: Neuroinflammation and mitochondrial impairment play important roles in the neuropathogenesis of Parkinson's disease (PD). The activation of NLRP3 inflammasome and the accumulation of α-synuclein (α-Syn) are strictly correlated to neuroinflammation. Therefore, the regulation of NLRP3 inflammasome activation and α-Syn aggregation might have therapeutic potential. It has been indicated that Dl-3-n-butylphthalide (NBP) produces neuroprotection against some neurological diseases such as ischemic stroke. We here intended to explore whether NBP suppressed NLRP3 inflammasome activation and reduced α-Syn aggregation, thus protecting dopaminergic neurons against neuroinflammation. Methods: In our study, we established a MPTP-induced mouse model and 6-OHDA-induced SH-SY5Y cell model to examine the neuroprotective actions of NBP. We then performed behavioral tests to examine motor dysfunction in MPTP-exposed mice after NBP treatment. Western blotting, immunofluorescence staining, flow cytometry and RT-qPCR were conducted to investigate the expression of NLRP3 inflammasomes, neuroinflammatory cytokines, PARP1, p-α-Syn, and markers of microgliosis and astrogliosis. Results: The results showed that NBP exerts a neuroprotective effect on experimental PD models. In vivo, NBP ameliorated behavioral impairments and reduced dopaminergic neuron loss in MPTP-induced mice. In vitro, treatment of SH-SY5Y cells with 6-OHDA (100uM,24 h) significantly decreased cell viability, increased intracellular ROS production, and induced apoptosis, while pretreatment with 5uM NBP could alleviated 6-OHDA-induced cytotoxicity, ROS production and cell apoptosis to some extent. Importantly, both in vivo and in vitro, NBP suppressed the activation of the NLRP3 inflammasome and the aggregation of α-Syn, thus inhibited neuroinflammation ameliorated mitochondrial impairments. Conclusions: In summary, NBP rescued dopaminergic neurons by reducing NLRP3 inflammasome activation and ameliorating mitochondrial impairments and increases in p-α-Syn levels. This current study may provide novel neuroprotective mechanisms of NBP as a potential therapeutic agent.


Asunto(s)
Benzofuranos/uso terapéutico , Neuronas Dopaminérgicas/fisiología , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo
14.
Front Aging Neurosci ; 13: 745438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912207

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.

15.
Front Aging Neurosci ; 13: 743754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707492

RESUMEN

Parkinson's disease dementia (PDD) is a common complication of Parkinson's disease that seriously affects patients' health and quality of life. At present, the process and pathological mechanisms of PDD remain controversial, which hinders the development of treatments. An increasing number of clinical studies have shown that alpha-synuclein (α-syn), tau, beta-amyloid (Aß), and iron are closely associated with PDD severity. Thus, we inferred the vicious cycle that causes oxidative stress (OS), due to the synergistic effects of α-syn, tau, Aß, and, iron, and which plays a pivotal role in the mechanism underlying PDD. First, iron-mediated reactive oxygen species (ROS) production can lead to neuronal protein accumulation (e.g., α-syn andAß) and cytotoxicity. In addition, regulation of post-translational modification of α-syn by iron affects the aggregation or oligomer formation of α-syn. Iron promotes tau aggregation and neurofibrillary tangles (NFTs) formation. High levels of iron, α-syn, Aß, tau, and NFTs can cause severe OS and neuroinflammation, which lead to cell death. Then, the increasing formation of α-syn, Aß, and NFTs further increase iron levels, which promotes the spread of α-syn and Aß in the central and peripheral nervous systems. Finally, iron-induced neurotoxicity promotes the activation of glycogen synthase kinase 3ß (GSK3ß) related pathways in the synaptic terminals, which in turn play an important role in the pathological synergistic effects of α-syn, tau and Aß. Thus, as the central factor regulating this vicious cycle, GSK3ß is a potential target for the prevention and treatment of PDD; this is worthy of future study.

16.
Front Neurol ; 12: 719354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566862

RESUMEN

Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)-mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA-mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein-protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA-mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA-mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA-mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.

17.
Artículo en Inglés | MEDLINE | ID: mdl-34122606

RESUMEN

Ferroptosis is associated with neural degeneration of dopaminergic neurons in Parkinson's disease (PD). However, how to control the level of ferroptosis in PD remains unclear. Clinically, moxibustion has been used to treat PD and has an apparent therapeutic effect on improving the motor symptoms of PD. In the present study, the PD rat model was constructed by two-point stereotactic 6-hydroxydopamine injection. Then, moxibustion was used to treat the PD rats. The expression of glutathione peroxidase 4 (GPX4) and Ferritin Heavy Chain 1 (FTH1), the level of reactive oxygen species (ROS), and the morphology of mitochondrial were detected to evaluate the level of ferroptosis. The results showed that moxibustion treatment of Shi's moxa sticks could reduce the behavioral score, alleviate the level of ferroptosis, decrease mitochondrial damage, and improve dopaminergic neuron survival. In conclusion, the present study results indicated that Shi's moxa sticks could effectively suppress the level of ferroptosis, thereby improving the survival of dopaminergic neurons in the SNpc of PD rats, which may provide a promising complementary and alternative therapy for PD patients.

18.
Biochem Biophys Res Commun ; 567: 35-41, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34134000

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide. Recent studies revealed that the ferroptosis pathway is involved in the death process of dopaminergic neurons in PD. The aberrant endosomal sorting pathway, which results in aberrant iron level in eukaryotic cells, may serve a role in the ferroptosis pathway in PD condition. However, its specific molecular mechanisms remained unclear. In the present study, we performed chromatin immunoprecipitation (ChIP) assay, the rank ordering of super-enhancers (ROSE) algorithm, and RNA interference (RNAi) to explore the regulatory mechanism of PD-specific super-enhancer (SE) in the endosomal sorting pathway and ferroptosis pathway of 6-OHDA-lesioned rats and cells. The ChIP assay and ROSE algorithm results showed that there are specific SEs expression in 6-OHDA-lesioned SNc of PD rats, and the most significant expression gene is Sorting Nexin 5 (SNX5). SNX5 silencing by RNAi experiments significantly decreased the level of ferroptosis in 6-OHDA-lesioned PC12 cells, suggesting the correlation between the SNX5, ferroptosis, and PD. In conclusion, this study investigated the mechanism by which PD-specific SE driven SNX5 promoted the ferroptosis level in PD models. This study further improved the understanding of the mechanism of ferroptosis during PD injury and provided potential therapeutic targets and clinical diagnostic markers in PD condition.


Asunto(s)
Neuronas Dopaminérgicas/patología , Ferroptosis , Enfermedad de Parkinson/patología , Nexinas de Clasificación/genética , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Masculino , Células PC12 , Enfermedad de Parkinson/genética , Ratas , Ratas Sprague-Dawley
19.
J Ethnopharmacol ; 279: 114305, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34129898

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Niujiaodihuang Detoxify Decoction (NDD) is an integrated traditional Chinese medicine prescription that has been used as a therapeutic agent for the treatment of acute liver failure (ALF). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY: To determine the protective effect of NDD on D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced ALF and explore the underlying mechanisms. MATERIALS AND METHODS: We characterized the NDD fingerprint by HPLC and established D-GalN/LPS-induced ALF models in Sprague-Dawley rats and LO2 cells. Next, we measured the protective and antiferroptotic effects of NDD in vivo and in vitro. To further investigate the molecular mechanisms underlying the effects of NDD, we performed metabolomic analysis of the liver tissue using LC-MS/MS. RESULTS: Results of serum biochemical analysis, liver histopathology, and cell viability showed that NDD effectively relieved the liver injury. It reduced the accumulation of labile iron and alleviated lipid peroxidation by enhancing GPX4 activity. The mitochondrial morphology indicated that NDD exerted its hepatoprotective effect through an antiferroptotic activity. Metabolomic analysis showed that NDD treatment increased the levels of cysteine, decreased those of glutamate, and ameliorated the D-GalN/LPS-induced reduction in the levels of glutathione (GSH). The results for intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were consistent with those of metabolomic analysis. CONCLUSION: Our findings indicate that NDD exerts hepatoprotective activity by evoking the reprogramming of GSH metabolism, and thereby, inhibiting ferroptosis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Fallo Hepático Agudo/prevención & control , Animales , Línea Celular , Cromatografía Liquida , Modelos Animales de Enfermedad , Humanos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Metabolómica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...