Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 40(1): 27, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693223

RESUMEN

Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.


Asunto(s)
Exosomas , Exosomas/metabolismo , Humanos , Animales , Toxinas Biológicas/toxicidad , Toxinas Biológicas/metabolismo , Transducción de Señal/efectos de los fármacos , Biomarcadores/metabolismo
2.
Heliyon ; 10(6): e27449, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496841

RESUMEN

Coreopsis tinctoria (CT) improves energy metabolism. However, the role of CT in alleviating obesity-induced hyperglycemia by targeting the liver remains unknown. Therefore, this article aims to explore the mechanism by which CT improves energy metabolism and resists hyperglycemia. The water and ethanol extracts of CT were administered to high-fat diet-induced (HFD) obese C57BL/6J mice at a dose of 4 g/kg.bw (low-dose water extract, WL; low-dose ethanol extract, EL) or 10 g/kg.bw (high-dose water extract, WH; high-dose ethanol extract, EH). Mice that consumed a maintenance diet (LFD) were included as blank controls. Network pharmacology, liquid chromatography-mass spectrometry (LC-MS), L02 cell cultivation, and liver transcriptomics were used to examine the mechanism and functional components of CT against obesity-induced hyperglycemia. The results indicated that WL significantly (p < 0.05) alleviated glucose intolerance and insulin resistance in obesity-induced hyperglycemia. Kaempferol is the main active compound of CT, which demonstrated significant (p < 0.05) anti-hyperglycemic effects in obese mice and L02 cells. Finally, kaempferol significantly (p < 0.05; fold change >1.2) shifted the genes involved in carbon metabolism, glycolysis/gluconeogenesis, and the mitogen-activated protein kinase (MAPK) pathways toward the trend of LFD, indicating that it exerts an anti-hyperglycemic effect through these molecular mechanisms. Overall, oral intake of CT lowers blood glucose and improves insulin sensitivity in mice with obesity-induced hyperglycemia. Kaempferol is the primary functional component of CT.

3.
Environ Int ; 182: 108345, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38008010

RESUMEN

Deoxynivalenol (DON) is a trichothecene toxin that mainly produced by strains of Fusarium spp. DON contamination is widely distributed and is a global food safety threat. Existing studies have expounded its harmful effects on growth inhibition, endocrine disruption, immune function impairment, and reproductive toxicity. In energy metabolism, DON suppresses appetite, reduces body weight, triggers lipid oxidation, and negatively affects cholesterol and fatty acid homeostasis. In this study, high-fat diet (HFD) induced obese C57BL/6J mice were orally treated with 0.1 mg/kg bw/d and 1.0 mg/kg bw/d DON for 4 weeks. The lipid metabolism of mice and the molecular mechanisms were explored. The data showed that although DON reduced body weight and fat mass in HFD mice, it significantly increased their serum triglyceride concentrations, disturbance of serum lipid metabolites, impaired glucose, and resulted in insulin intolerance in mice. In addition, the transcriptional and expression changes of lipid metabolism genes in the liver and epididymis (EP) adipose indicate that the DON-mediated increase in serum triglycerides is caused by lipoprotein lipase (LPL) inhibition in EP adipose. Furthermore, DON down-regulates the expression of LPL through the PPARγ signaling pathway in EP adipose. These results are further confirmed by the serum lipidomics analysis. In conclusion, DON acts on the PPARγ pathway of white adipose to inhibit the expression of LPL, mediate the increase of serum triglyceride in obese mice, disturb the homeostasis of lipid metabolism, and increase the risk of cardiovascular disease. This study reveals the interference mechanism of DON on lipid metabolism in obese mice and provides a theoretical basis for its toxic effect in obese individuals.


Asunto(s)
Dieta Alta en Grasa , Trastornos del Metabolismo de los Lípidos , Humanos , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Ratones Obesos , PPAR gamma/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Peso Corporal , Trastornos del Metabolismo de los Lípidos/complicaciones , Trastornos del Metabolismo de los Lípidos/metabolismo , Colesterol , Triglicéridos/metabolismo , Triglicéridos/farmacología , Hígado
4.
Food Chem X ; 18: 100726, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397201

RESUMEN

Soybean agglutinin (SBA) is a heat-sensitive anti-nutritional factor (ANF). It affects nutrient absorption and causes organism poisoning. This study explored the SBA passivation ability and mechanism by ultra-high pressure (HHP), a non-thermal food processing technology. The results indicated that more than 500 MPa HHP treatment reduced the SBA activity by destroying its secondary and tertiary structures. Also, the cell and animal experiments showed that HHP treatment reduced the cytotoxicity of SBA, improved the mice's body weight, and alleviated liver, kidney, and digestive tract damage in Vivo. These results demonstrated that HHP had a high passivation efficiency against the SBA, thereby HHP promoting the safety of soybean products. This study provided supporting evidence for ultra-high-pressure treatment applications in soybean processing.

5.
Nutrients ; 15(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771448

RESUMEN

The gut-liver axis has emerged as a key player in the progression of non-alcoholic fatty liver disease (NAFLD). Sulforaphane (SFN) is a bioactive compound found in cruciferous vegetables; however, it has not been reported whether SFN improves NAFLD via the gut-liver axis. C57BL/6 mice were fed a high-fat and high-fructose (HFHFr) diet, with or without SFN gavage at doses of 15 and 30 mg·kg-1 body weight for 12 weeks. The results showed that SFN reduced weight gain, hepatic inflammation, and steatosis in HFHFr mice. SFN altered the composition of gut microbes. Moreover, SFN enhanced the intestinal tight junction protein ZO-1, reduced serum LPS, and inhibited LPS/TLR4 and ERS pathways to reduce intestinal inflammation. As a result, SFN protected the intestinal integrity and declined the gut-derived LPS translocations to the liver in HFHFr diet-induced mice. SFN decreased the liver LPS levels and inhibited the LPS/TLR4 pathway activations, thus inhibiting the pro-inflammatory cytokines. Notably, Spearman correlation analysis showed that the protective effect of SFN on intestinal barrier integrity and its anti-inflammatory effect on the liver was associated with improved intestinal dysbiosis. Above all, dietary intervention with SFN attenuates NAFLD through the gut-liver axis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
6.
Mol Nutr Food Res ; 66(22): e2200173, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35983694

RESUMEN

SCOPE: Diallyl trisulfide (DATS) is a bioactive compound in garlic. The anti-obesity effect of garlic oil has been reported, but the role and mechanism of DATS in preventing obesity remain to be explored. METHODS AND RESULTS: Studies with high-fat-diet-induced obese mice and 3T3-L1 adipocytes are performed. The results show that DATS significantly reduces lipid accumulation and repairs disordered metabolism in vivo by restraining adipogenesis and lipogenesis, and promoting lipolysis and fatty acid oxidation in white adipose tissue. In cells, DATS plays different roles at different stages of adipocyte differentiation. Notably, DATS reduces lipid accumulation mainly by inhibiting adipogenesis and lipogenesis at the late stage. KLF15 is knocked down in 3T3-L1 cells, which eliminate the inhibitory effect of DATS on adipogenesis and lipogenesis. The dual-luciferase reporter and ChIP assays indicate that DATS can inhibit the transcriptional activation function of KLF15 on PPARγ by inhibiting the binding of KLF15 to PPARγ promoter. The function comparison of structural analogs and the intervention of dithiothreitol show that disulfide bond is crucial for DATS to work. CONCLUSION: DATS prevents obesity by regulating the transcriptional activation function of KLF15 on PPARγ.


Asunto(s)
Adipogénesis , Compuestos Alílicos , Factores de Transcripción de Tipo Kruppel , Lipogénesis , Obesidad , Animales , Ratones , Células 3T3-L1 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Lípidos/farmacología , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Activación Transcripcional , Compuestos Alílicos/uso terapéutico , Sulfuros/uso terapéutico
7.
Toxins (Basel) ; 14(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35737047

RESUMEN

Zearalenone, a mycotoxin produced by fungi of the genus Fusarium, widely exists in animal feed and human food. The structure of zearalenone is similar to estrogen, so it mainly has estrogenic effects on various organisms. Products contaminated with zearalenone can pose risks to animals and humans. Therefore, it is imperative to carry out toxicological research on zearalenone and evaluate its risk to human health. This paper briefly introduces the production, physical, and chemical properties of zearalenone and the research progress of its toxicity kinetics, focusing on its genetic toxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, carcinogenicity, endocrine interference, and its impact on intestinal health. Finally, the progress of the risk assessment of human exposure is summarized to provide a reference for the follow-up study of zearalenone.


Asunto(s)
Fusarium , Micotoxinas , Zearalenona , Alimentación Animal/análisis , Animales , Estudios de Seguimiento , Contaminación de Alimentos/análisis , Fusarium/química , Micotoxinas/análisis , Zearalenona/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...