Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Biotechnol J ; 19(9): e2400394, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246125

RESUMEN

The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.


Asunto(s)
Polietilenglicoles , Polietilenglicoles/química , Humanos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/química , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Cloruro de Sodio/química , ADN/química , ADN/aislamiento & purificación , Polímeros/química , Biopsia Líquida/métodos , Sales (Química)/química
3.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39338379

RESUMEN

Lipid nanoparticles (LNPs) and their versatile nucleic acid payloads bear great potential as delivery systems. Despite their complex lipid composition, their quality is primarily judged by particle characteristics and nucleic acid encapsulation. In this study, we present a holistic reversed-phase (RP)-charged aerosol detection (CAD)-based method developed for commonly used LNP formulations, allowing for intensified LNP and process characterization. We used an experimental approach for power function value (PFV) optimization termed exploratory calibration, providing a single PFV (1.3) in an appropriate linearity range for all six lipids. Followed by the procedure of method calibration and validation, linearity (10-400 ng, R2 > 0.996), precision, accuracy, and robustness were effectively proven. To complement the commonly determined LNP attributes and to evaluate the process performance across LNP processing, the developed RP-CAD method was applied in a process parameter study varying the total flow rate (TFR) during microfluidic mixing. The RP-CAD method revealed a constant lipid molar ratio across processing but identified deviations in the theoretical lipid content and general lipid loss, which were both, however, entirely TFR-independent. The deviations in lipid content could be successfully traced back to the lipid stock solution preparation. In contrast, the observed lipid loss was attributable to the small-scale dialysis following microfluidic mixing. Overall, this study establishes a foundation for employing RP-CAD for lipid quantification throughout LNP processing, and it highlights the potential to extend its applicability to other LNPs, process parameter studies, or processes such as cross-flow filtration.

4.
J Chromatogr A ; 1734: 465261, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39216284

RESUMEN

Biopharmaceutical products are often produced in Chinese hamster ovary (CHO) cell cultures that are vulnerable to virus infections. Therefore, it is a regulatory requirement that downstream purification steps for biopharmaceuticals can remove viruses from feedstocks. Anion exchange chromatography (AEX) is one of the downstream unit operations that is most frequently used for this purpose and claimed for its capability to remove viruses. However, the impact of various process parameters on virus removal by AEX is still not fully understood. Mechanistic modeling could be a promising way to approach this gap, as these models require comparatively few experiments for calibration. This makes them a valuable tool to improve understanding of viral clearance, especially since virus spiking studies are costly and time consuming. In this study, we present how the virus clearance of a MVM mock virus particle by Q Sepharose FF resin can be described by mechanistic modeling. A lumped kinetic model was combined with a steric mass action model and calibrated at micro scale using three linear gradient experiments and an incremental step elution gradient. The model was subsequently verified for its capability to predict the effect of different sodium chloride concentrations, as well as residence times, on virus clearance and was in good agreement with the LRVs of the verification runs. Overall, models like this could enhance the mechanistic understanding of viral clearance mechanisms and thereby contribute to the development of more efficient and safer biopharmaceutical downstream processes.


Asunto(s)
Cricetulus , Virus Diminuto del Ratón , Cromatografía por Intercambio Iónico/métodos , Animales , Virus Diminuto del Ratón/aislamiento & purificación , Virus Diminuto del Ratón/química , Células CHO , Cinética , Resinas de Intercambio Aniónico/química , Cricetinae , Ratones
5.
Front Bioeng Biotechnol ; 12: 1403644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070164

RESUMEN

The conjugation reaction is the central step in the manufacturing process of antibody-drug conjugates (ADCs). This reaction generates a heterogeneous and complex mixture of differently conjugated sub-species depending on the chosen conjugation chemistry. The parametrization of the conjugation reaction through mechanistic kinetic models offers a chance to enhance valuable reaction knowledge and ensure process robustness. This study introduces a versatile modeling framework for the conjugation reaction of cysteine-conjugated ADC modalities-site-specific and interchain disulfide conjugation. Various conjugation kinetics involving different maleimide-functionalized payloads were performed, while controlled gradual payload feeding was employed to decelerate the conjugation, facilitating a more detailed investigation of the reaction mechanism. The kinetic data were analyzed with a reducing reversed phase (RP) chromatography method, that can readily be implemented for the accurate characterization of ADCs with diverse drug-to-antibody ratios, providing the conjugation trajectories of the single chains of the monoclonal antibody (mAb). Possible kinetic models for the conjugation mechanism were then developed and selected based on multiple criteria. When calibrating the established model to kinetics involving different payloads, conjugation rates were determined to be payload-specific. Further conclusions regarding the kinetic comparability across the two modalities could also be derived. One calibrated model was used for an exemplary in silico screening of the initial concentrations offering valuable insights for profound understanding of the conjugation process in ADC development.

6.
Front Bioeng Biotechnol ; 12: 1399938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882637

RESUMEN

Virus-like particles (VLPs) are a promising class of biopharmaceuticals for vaccines and targeted delivery. Starting from clarified lysate, VLPs are typically captured by selective precipitation. While VLP precipitation is induced by step-wise or continuous precipitant addition, current monitoring approaches do not support the direct product quantification, and analytical methods usually require various, time-consuming processing and sample preparation steps. Here, the application of Raman spectroscopy combined with chemometric methods may allow the simultaneous quantification of the precipitated VLPs and precipitant owing to its demonstrated advantages in analyzing crude, complex mixtures. In this study, we present a Raman spectroscopy-based Process Analytical Technology (PAT) tool developed on batch and fed-batch precipitation experiments of Hepatitis B core Antigen VLPs. We conducted small-scale precipitation experiments providing a diversified data set with varying precipitation dynamics and backgrounds induced by initial dilution or spiking of clarified Escherichia coli-derived lysates. For the Raman spectroscopy data, various preprocessing operations were systematically combined allowing the identification of a preprocessing pipeline, which proved to effectively eliminate initial lysate composition variations as well as most interferences attributed to precipitates and the precipitant present in solution. The calibrated partial least squares models seamlessly predicted the precipitant concentration with R 2 of 0.98 and 0.97 in batch and fed-batch experiments, respectively, and captured the observed precipitation trends with R 2 of 0.74 and 0.64. Although the resolution of fine differences between experiments was limited due to the observed non-linear relationship between spectral data and the VLP concentration, this study provides a foundation for employing Raman spectroscopy as a PAT sensor for monitoring VLP precipitation processes with the potential to extend its applicability to other phase-behavior dependent processes or molecules.

7.
Mol Ther Methods Clin Dev ; 32(2): 101252, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38774583

RESUMEN

Virus particle (VP) quantification plays a pivotal role in the development of production processes of VPs for virus-based therapies. The yield based on total VP count serves as a process performance indicator for evaluating process efficiency and consistency. Here, a label-free particle quantification method for enveloped VPs was developed, with potential applications in oncolytic virotherapy, vaccine development, and gene therapy. The method comprises size-exclusion chromatography (SEC) separation using high-performance liquid chromatography (HPLC) instruments. Ultraviolet (UV) was used for particle quantification and multi-angle light scattering (MALS) for particle characterization. Consistent recoveries of over 97% in the SEC were achieved upon mobile phase screenings and addition of bovine serum albumin (BSA) as sample stabilizer. A calibration curve was generated, and the method's performance and applicability to in-process samples were characterized. The assay's repeatability variation was <1% and its intermediate precision variation was <3%. The linear range of the method spans from 7.08 × 108 to 1.72 × 1011 VP/mL, with a limit of detection (LOD) of 7.72 × 107 VP/mL and a lower limit of quantification (LLOQ) of 4.20 × 108 VP/mL. The method, characterized by its high precision, requires minimal hands-on time and provides same-day results, making it efficient for process development.

8.
Front Bioeng Biotechnol ; 12: 1397465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812919

RESUMEN

Protein crystallization as opposed to well-established chromatography processes has the benefits to reduce production costs while reaching a comparable high purity. However, monitoring crystallization processes remains a challenge as the produced crystals may interfere with analytical measurements. Especially for capturing proteins from complex feedstock containing various impurities, establishing reliable process analytical technology (PAT) to monitor protein crystallization processes can be complicated. In heterogeneous mixtures, important product characteristics can be found by multivariate analysis and chemometrics, thus contributing to the development of a thorough process understanding. In this project, an analytical set-up is established combining offline analytics, on-line ultraviolet visible light (UV/Vis) spectroscopy, and in-line Raman spectroscopy to monitor a stirred-batch crystallization process with multiple phases and species being present. As an example process, the enzyme Lactobacillus kefir alcohol dehydrogenase (LkADH) was crystallized from clarified Escherichia coli (E. coli) lysate on a 300 mL scale in five distinct experiments, with the experimental conditions changing in terms of the initial lysate solution preparation method and precipitant concentration. Since UV/Vis spectroscopy is sensitive to particles, a cross-flow filtration (cross-flow filtration)-based bypass enabled the on-line analysis of the liquid phase providing information on the lysate composition regarding the nucleic acid to protein ratio. A principal component analysis (PCA) of in situ Raman spectra supported the identification of spectra and wavenumber ranges associated with productspecific information and revealed that the experiments followed a comparable, spectral trend when crystals were present. Based on preprocessed Raman spectra, a partial least squares (PLS) regression model was optimized to monitor the target molecule concentration in real-time. The off-line sample analysis provided information on the crystal number and crystal geometry by automated image analysis as well as the concentration of LkADH and host cell proteins (HCPs) In spite of a complex lysate suspension containing scattering crystals and various impurities, it was possible to monitor the target molecule concentration in a heterogeneous, multi-phase process using spectroscopic methods. With the presented analytical set-up of off-line, particle-sensitive on-line, and in-line analyzers, a crystallization capture process can be characterized better in terms of the geometry, yield, and purity of the crystals.

9.
Front Bioeng Biotechnol ; 12: 1228846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357704

RESUMEN

Chemometric modeling for spectral data is considered a key technology in biopharmaceutical processing to realize real-time process control and release testing. Machine learning (ML) models have been shown to increase the accuracy of various spectral regression and classification tasks, remove challenging preprocessing steps for spectral data, and promise to improve the transferability of models when compared to commonly applied, linear methods. The training and optimization of ML models require large data sets which are not available in the context of biopharmaceutical processing. Generative methods to extend data sets with realistic in silico samples, so-called data augmentation, may provide the means to alleviate this challenge. In this study, we develop and implement a novel data augmentation method for generating in silico spectral data based on local estimation of pure component profiles for training convolutional neural network (CNN) models using four data sets. We simultaneously tune hyperparameters associated with data augmentation and the neural network architecture using Bayesian optimization. Finally, we compare the optimized CNN models with partial least-squares regression models (PLS) in terms of accuracy, robustness, and interpretability. The proposed data augmentation method is shown to produce highly realistic spectral data by adapting the estimates of the pure component profiles to the sampled concentration regimes. Augmenting CNNs with the in silico spectral data is shown to improve the prediction accuracy for the quantification of monoclonal antibody (mAb) size variants by up to 50% in comparison to single-response PLS models. Bayesian structure optimization suggests that multiple convolutional blocks are beneficial for model accuracy and enable transfer across different data sets. Model-agnostic feature importance methods and synthetic noise perturbation are used to directly compare the optimized CNNs with PLS models. This enables the identification of wavelength regions critical for model performance and suggests increased robustness against Gaussian white noise and wavelength shifts of the CNNs compared to the PLS models.

11.
J Chromatogr A ; 1718: 464706, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335881

RESUMEN

Multimodal chromatography has emerged as a powerful method for the purification of therapeutic antibodies. However, process development of this separation technique remains challenging because of an intricate and molecule-specific interaction towards multimodal ligands, leading to time-consuming and costly experimental optimization. This study presents a multiscale modeling approach to predict the multimodal chromatographic behavior of therapeutic antibodies based on their sequence information. Linear gradient elution (LGE) experiments were performed on an anionic multimodal resin for 59 full-length antibodies, including five different antibody formats at pH 5.0, 6.0, and 7.0 that were used for parameter determination of a linear adsorption model at low loading density conditions. Quantitative structure-property relationship (QSPR) modeling was utilized to correlate the adsorption parameters with up to 1374 global and local physicochemical descriptors calculated from antibody homology models. The final QSPR models employed less than eight descriptors per model and demonstrated high training accuracy (R² > 0.93) and reasonable test set prediction accuracy (Q² > 0.83) for the adsorption parameters. Model evaluation revealed the significance of electrostatic interaction and hydrophobicity in determining the chromatographic behavior of antibodies, as well as the importance of the HFR3 region in antibody binding to the multimodal resin. Chromatographic simulations using the predicted adsorption parameters showed good agreement with the experimental data for the vast majority of antibodies not employed during the model training. The results of this study demonstrate the potential of sequence-based prediction for determining chromatographic behavior in therapeutic antibody purification. This approach leads to more efficient and cost-effective process development, providing a valuable tool for the biopharmaceutical industry.


Asunto(s)
Anticuerpos , Relación Estructura-Actividad Cuantitativa , Cromatografía por Intercambio Iónico/métodos
12.
Mol Ther Methods Clin Dev ; 31: 101148, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38046198

RESUMEN

Recombinant adeno-associated viruses (rAAVs) are promising gene delivery vectors in the emerging field of in vivo gene therapies. To ensure their consistent quality during manufacturing and process development, multiple analytical techniques have been proposed for the characterization and quantification of rAAV capsids. Despite their indisputable capabilities for performing this task, current analytical methods are rather time-consuming, material intensive, complicated, and costly, restricting their suitability for process development in which time and sample throughput are severe constraints. To eliminate this bottleneck, we introduce here an affinity-based high-performance liquid chromatography method that allows the determination of the capsid titer and the full/empty ratio of rAAVs within less than 5 min. By packing the commercially available AAVX affinity resin into small analytical columns, the rAAV fraction of diverse serotypes can be isolated from process-related impurities and analyzed by UV and fluorescence detection. As demonstrated by both method qualification data and side-by-side comparison with AAV enzyme-linked immunosorbent assay results for rAAV8 samples as well as by experiments using additional rAAV2, rAAV8, and rAAV9 constructs, our approach showed good performance, indicating its potential as a fast, simple and efficient tool for supporting the development of rAAV gene therapies.

13.
Gels ; 9(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38131913

RESUMEN

Gelatin methacryloyl (GelMA) is widely used for the formulation of hydrogels in diverse biotechnological applications. After the derivatization of raw gelatin, the degree of functionalization (DoF) is an attribute of particular interest as the functional residues are necessary for crosslinking. Despite progress in the optimization of the process found in the literature, a comparison of the effect of raw gelatin on the functionalization is challenging as various approaches are employed. In this work, the modification of gelatin was performed at room temperature (RT), and eight different gelatin products were employed. The DoF proved to be affected by the bloom strength and by the species of gelatin at an equal reactant ratio. Furthermore, batch-to-batch variability of the same gelatin source had an effect on the produced GelMA. Moreover, the elasticity of GelMA hydrogels depended on the DoF of the protein as well as on bloom strength and source of the raw material. Additionally, GelMA solutions were used for the microfluidic production of droplets and subsequent crosslinking to hydrogel. This process was developed as a single pipeline at RT using protein concentrations up to 20% (w/v). Droplet size was controlled by the ratio of the continuous to dispersed phase. The swelling behavior of hydrogel particles depended on the GelMA concentration.

14.
J Chromatogr A ; 1711: 464437, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37865026

RESUMEN

Multimodal chromatography has emerged as a promising technique for antibody purification, owing to its capacity to selectively capture and separate target molecules. However, the optimization of chromatography parameters remains a challenge due to the intricate nature of protein-ligand interactions. To tackle this issue, efficient predictive tools are essential for the development and optimization of multimodal chromatography processes. In this study, we introduce a methodology that predicts the elution behavior of antibodies in multimodal chromatography based on their amino acid sequences. We analyzed a total of 64 full-length antibodies, including IgG1, IgG4, and IgG-like multispecific formats, which were eluted using linear pH gradients from pH 9.0 to 4.0 on the anionic mixed-mode resin Capto adhere. Homology models were constructed, and 1312 antibody-specific physicochemical descriptors were calculated for each molecule. Our analysis identified six key structural features of the multimodal antibody interaction, which were correlated with the elution behavior, emphasizing the antibody variable region. The results show that our methodology can predict pH gradient elution for a diverse range of antibodies and antibody formats, with a test set R² of 0.898. The developed model can inform process development by predicting initial conditions for multimodal elution, thereby reducing trial and error during process optimization. Furthermore, the model holds the potential to enable an in silico manufacturability assessment by screening target antibodies that adhere to standardized purification conditions. In conclusion, this study highlights the feasibility of using structure-based prediction to enhance antibody purification in the biopharmaceutical industry. This approach can lead to more efficient and cost-effective process development while increasing process understanding.


Asunto(s)
Anticuerpos Monoclonales , Fuerza Protón-Motriz , Cromatografía por Intercambio Iónico/métodos , Cromatografía , Inmunoglobulina G
15.
Biofabrication ; 16(1)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769669

RESUMEN

The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.


Asunto(s)
Bioimpresión , Humanos , Bioimpresión/métodos , Reproducibilidad de los Resultados , Andamios del Tejido/química , Materiales Biocompatibles , Impresión Tridimensional , Ingeniería de Tejidos/métodos
16.
Front Bioeng Biotechnol ; 11: 1192050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304136

RESUMEN

Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.

17.
18.
Biotechnol Bioeng ; 120(7): 1914-1928, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190793

RESUMEN

In the production of antibody-drug conjugates (ADCs), the conjugation reaction is a central step defining the final product composition and, hence, directly affecting product safety and efficacy. To enable real-time monitoring, spectroscopic sensors in combination with multivariate regression models have gained popularity in recent years. The extended Kalman filter (EKF) can be used as so-called soft-sensor to fuse sensor predictions with long-horizon forecasts by process models. This enables the dynamic update of the current state and provides increased robustness against experimental noise or model errors. Due to the uncertainty associated with sensor and process models in biopharmaceutical applications, the deployment of such soft-sensors is challenging. In this study, we demonstrate the combination of an uncertainty-aware sensor model with a kinetic reaction model using an EKF to monitor a site-directed ADC conjugation reaction. As the sensor model, a Gaussian process regression model is presented to realize a time-variant determination of the sensor uncertainty. The EKF fuses the time-discrete predictions of the amount of conjugated drug from the sensor model with the time-continuous predictions from the kinetic model. While the ADC species are not distinguishable by on-line recorded UV/Vis spectra, the developed soft-sensor is able to dynamically update all relevant reaction species. It could be shown that the use of time-variant process and sensor noise computation approaches improved the performance of the EKF and achieved a reduction of the prediction error of up to 23% compared with the kinetic model. The developed framework proved to enhance robustness against noisy sensor measurements or wrong model initialization and was successfully transferred from batch to fed-batch mode. In future, this framework could be implemented for model-based process control and be adopted for other ADC conjugation reaction types.


Asunto(s)
Inmunoconjugados , Inmunoconjugados/química
19.
Polymers (Basel) ; 15(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37111976

RESUMEN

Three-dimensional bioprinting and especially extrusion-based printing as a most frequently employed method in this field is constantly evolving as a discipline in regenerative medicine and tissue engineering. However, the lack of relevant standardized analytics does not yet allow an easy comparison and transfer of knowledge between laboratories regarding newly developed bioinks and printing processes. This work revolves around the establishment of a standardized method, which enables the comparability of printed structures by controlling for the extrusion rate based on the specific flow behavior of each bioink. Furthermore, printing performance was evaluated by image-processing tools to verify the printing accuracy for lines, circles, and angles. In addition, and complementary to the accuracy metrics, a dead/live staining of embedded cells was performed to investigate the effect of the process on cell viability. Two bioinks, based on alginate and gelatin methacryloyl, which differed in 1% (w/v) alginate content, were tested for printing performance. The automated image processing tool reduced the analytical time while increasing reproducibility and objectivity during the identification of printed objects. During evaluation of the processing effect of the mixing of cell viability, NIH 3T3 fibroblasts were stained and analyzed after the mixing procedure and after the extrusion process using a flow cytometer, which evaluated a high number of cells. It could be observed that the small increase in alginate content made little difference in the printing accuracy but had a considerable strong effect on cell viability after both processing steps.

20.
Front Bioeng Biotechnol ; 11: 1123842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082211

RESUMEN

The manufacturing of antibody-drug conjugates (ADCs) involves the addition of a cytotoxic small-molecule linker-drug (= payload) to a solution of functionalized antibodies. For the development of robust conjugation processes, initially small-scale reaction tubes are used which requires a lot of manual handling. Scale-up to larger reaction vessels is often knowledge-driven and scale-comparability is solely assessed based on final product quality which does not account for the dynamics of the reaction. In addition, information about the influence of process parameters, such as stirrer speed, temperature, or payload addition rates, is limited due to high material costs. Given these limitations, there is a need for a modeling-based approach to investigate conjugation scale-up. In this work, both experimental kinetic studies and computational fluid dynamics (CFD) conjugation simulations were performed to understand the influence of scale and mixing parameters. In the experimental part, conjugation kinetics in small-scale reaction tubes with different mixing types were investigated for two ADC systems and compared to larger bench-scale reactions. It was demonstrated that more robust kinetics can be achieved through internal stirrer mixing instead of external mixing devices, such as orbital shakers. In the simulation part, 3D-reactor models were created by coupling CFD-models for three large-scale reaction vessels with a kinetic model for a site-specific conjugation reaction. This enabled to study the kinetics in different vessels, as well as the effect of process parameter variations in silico. Overall, it was found that for this conjugation type sufficient mixing can be achieved at all scales and the studied parameters cause only deviations during the payload addition period. An additional time-scale analysis demonstrated to aid the assessment of mixing effects during ADC process scale-up when mixing times and kinetic rates are known. In summary, this work highlights the benefit of kinetic models for enhanced conjugation process understanding without the need for large-scale experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA