Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Sleep Res ; : e14230, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705729

RESUMEN

During drowsiness, maintaining consistent attention becomes difficult, leading to behavioural lapses. Bursts of oscillations in the electroencephalogram (EEG) might predict such lapses, given that alpha bursts increase during inattention and theta bursts increase with time spent awake. Paradoxically, however, alpha bursts decrease with time awake and theta bursts increase during focussed attention and cognitive tasks. Therefore, we investigated to what extent theta and alpha bursts predicted performance in a sustained attention task, either when well rested (baseline, BL) or following 20 h of extended wakefulness (EW). High-density EEG was measured in 18 young adults, and the timing of bursts was related to trial outcomes (fast, slow, and lapse trials). To increase the likelihood of lapses, the task was performed under soporific conditions. Against expectations, alpha bursts were more likely before fast trials and less likely before lapses at baseline, although the effect was substantially reduced during extended wakefulness. Theta bursts showed no significant relationship to behavioural outcome either at baseline or extended wakefulness. However, following exploratory analyses, we found that large-amplitude theta and alpha bursts were more likely to be followed by lapse trials during extended wakefulness but not baseline. In summary, alpha bursts during baseline anticipated better trial outcomes, whereas large-amplitude theta and alpha bursts during extended wakefulness anticipated worse outcomes. Therefore, neither theta nor alpha bursts maintain a consistent relationship with behaviour under different levels of overall vigilance.

2.
Curr Biol ; 34(7): 1596-1603.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38503287

RESUMEN

Reindeer in the Arctic seasonally suppress daily circadian patterns of behavior present in most animals.1 In humans and mice, even when all daily behavioral and environmental influences are artificially suppressed, robust endogenous rhythms of metabolism governed by the circadian clock persist and are essential to health.2,3 Disrupted rhythms foster metabolic disorders and weight gain.4 To understand circadian metabolic organization in reindeer, we performed behavioral measurements and untargeted metabolomics from blood plasma samples taken from Eurasian tundra reindeer (Rangifer tarandus tarandus) across 24 h at 2-h intervals in four seasons. Our study confirmed the absence of circadian rhythms of behavior under constant darkness in the Arctic winter and constant daylight in the Arctic summer, as reported by others.1 We detected and measured the intensity of 893 metabolic features in all plasma samples using untargeted ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). A core group of metabolites (66/893 metabolic features) consistently displayed 24-h rhythmicity. Most metabolites displayed a robust 24-h rhythm in winter and spring but were arrhythmic in summer and fall. Half of all measured metabolites displayed ultradian sleep-wake dependence in summer. Irrespective of the arrhythmic behavior, metabolism is rhythmic (24 h) in seasons of low food availability, potentially favoring energy efficiency. In seasons of food abundance, 24-h rhythmicity in metabolism is drastically reduced, again irrespective of behavioral rhythms, potentially fostering weight gain.


Asunto(s)
Reno , Humanos , Animales , Ratones , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ritmo Circadiano , Estaciones del Año , Aumento de Peso
3.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38463948

RESUMEN

An objective measure of brain maturation is highly insightful for monitoring both typical and atypical development. Slow wave activity, recorded in the sleep electroencephalogram (EEG), reliably indexes changes in brain plasticity with age, as well as deficits related to developmental disorders such as attention-deficit hyperactivity disorder (ADHD). Unfortunately, measuring sleep EEG is resource-intensive and burdensome for participants. We therefore aimed to determine whether wake EEG could likewise index developmental changes in brain plasticity. We analyzed high-density wake EEG collected from 163 participants 3-25 years old, before and after a night of sleep. We compared two measures of oscillatory EEG activity, amplitudes and density, as well as two measures of aperiodic activity, intercepts and slopes. Furthermore, we compared these measures in patients with ADHD (8-17 y.o., N=58) to neurotypical controls. We found that wake oscillation amplitudes behaved the same as sleep slow wave activity: amplitudes decreased with age, decreased after sleep, and this overnight decrease decreased with age. Oscillation densities were also substantially age-dependent, decreasing overnight in children and increasing overnight in adolescents and adults. While both aperiodic intercepts and slopes decreased linearly with age, intercepts decreased overnight, and slopes increased overnight. Overall, our results indicate that wake oscillation amplitudes track both development and sleep need, and overnight changes in oscillation density reflect some yet-unknown shift in neural activity around puberty. No wake measure showed significant effects of ADHD, thus indicating that wake EEG measures, while easier to record, are not as sensitive as those during sleep.

4.
J Sleep Res ; 33(2): e13936, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37217191

RESUMEN

Adequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day-to-day sleep behaviours (e.g., duration, regularity) in early life relate to non-rapid eye movement (NREM) neurophysiology-acutely and the long-term-remains to be studied. We measured sleep behaviours in 32 healthy 6-month-olds assessed with actimetry and neurophysiology with high-density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow-wave activity (SWA). Second, night-time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night-time sleep duration at 12 months. These novel findings widen our understanding that infants' sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants' sleep behaviours 'at risk' that foster later neurodevelopmental problems.


Asunto(s)
Movimientos Oculares , Sueño de Onda Lenta , Lactante , Humanos , Electroencefalografía , Sueño/fisiología , Encéfalo
5.
Sleep Med ; 113: 165-171, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029625

RESUMEN

BACKGROUND: Disturbed sleep is among the most frequent health complaints of people exposed to radio frequency electromagnetic fields (RF-EMF) used in mobile telecommunication, particularly in individuals who consider themselves as EMF hypersensitive (EHS). We aimed at investigating whether the EHS status per se is associated with sleep complaints. Because allelic variants of the gene encoding the L-type, voltage-gated calcium channel Cav1.2 (CACNA1C) were previously associated with sleep complaints reminiscent of those reported by EHS individuals, we also explored whether self-rated EHS status and sleep quality associate with these gene variants. METHODS: A total of 2'040 participants (1'381 females) aged 18-30 years completed online, validated questionnaires on EMF sensitivity, subjective sleep quality, daytime sleepiness, mentation during sleep, and diurnal preference. They also provided a saliva sample for genotyping three functional variants of CACNA1C (rs7304986, rs16929277 and rs2302729). Eligible participants endorsing the question "Are you electro-hypersensitive?" were considered as "EHS" (n = 105), those denying this question yet believing to develop detrimental health symptoms due to prevailing electromagnetic pollution as "attributers" (n = 254), and the remaining participants as "non-EHS" (n = 1'406). We combined the EHS and attributers into one group for binary analyses. In exploratory analyses, we then tested possible associations between EMF sensitivity, subjective sleep variables and CACNA1C variants using linear and logistic regression. We used age, sex, level of education, presence of sleep disorders and habitual mobile phone use as covariates and corrected with Benjamini-Hochberg False Discovery Rate for multiple comparisons. RESULTS: The EHS/attributers consistently reported prolonged sleep latency, reduced sleep quality, higher sleepiness and more nocturnal mentation when compared to non-EHS. Habitual mobile phone use was not associated with self-rated sleep latency and sleep quality scores. While the T-allele of variant rs2302729 of CACNA1C was associated with both, self-reported EMF sensitivity and reduced subjective sleep quality, we found no evidence for the hypothesis that EHS mediates impaired sleep quality via this allelic variant. CONCLUSIONS: Irrespective of reported RF-EMF exposure, self-rated EHS/attributers rated subjective sleep quality worse than non-EHS individuals. TRIAL REGISTRATION: Swiss National Clinical Trials Portal (SNCTP000002285) and ClinicalTrials.gov (NCT03074617).


Asunto(s)
Ondas de Radio , Calidad del Sueño , Femenino , Humanos , Campos Electromagnéticos/efectos adversos , Sueño , Encuestas y Cuestionarios
6.
Curr Biol ; 34(2): 427-433.e5, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38141616

RESUMEN

Timing and quantity of sleep depend on a circadian (∼24-h) rhythm and a specific sleep requirement.1 Sleep curtailment results in a homeostatic rebound of more and deeper sleep, the latter reflected in increased electroencephalographic (EEG) slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep.2 Circadian rhythms are synchronized by the light-dark cycle but persist under constant conditions.3,4,5 Strikingly, arctic reindeer behavior is arrhythmic during the solstices.6 Moreover, the Arctic's extreme seasonal environmental changes cause large variations in overall activity and food intake.7 We hypothesized that the maintenance of optimal functioning under these extremely fluctuating conditions would require adaptations not only in daily activity patterns but also in the homeostatic regulation of sleep. We studied sleep using non-invasive EEG in four Eurasian tundra reindeer (Rangifer tarandus tarandus) in Tromsø, Norway (69°N) during the fall equinox and both solstices. As expected, sleep-wake rhythms paralleled daily activity distribution, and sleep deprivation resulted in a homeostatic rebound in all seasons. Yet, these sleep rebounds were smaller in summer and fall than in winter. Surprisingly, SWA decreased not only during NREM sleep but also during rumination. Quantitative modeling revealed that sleep pressure decayed at similar rates during the two behavioral states. Finally, reindeer spent less time in NREM sleep the more they ruminated. These results suggest that they can sleep during rumination. The ability to reduce sleep need during rumination-undisturbed phases for both sleep recovery and digestion-might allow for near-constant feeding in the arctic summer.


Asunto(s)
Reno , Animales , Reno/fisiología , Sueño/fisiología , Privación de Sueño , Ritmo Circadiano/fisiología , Electroencefalografía , Regiones Árticas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38083003

RESUMEN

Mood classification from passive data promises to provide an unobtrusive way to track a person's emotions over time. In this exploratory study, we collected phone sensor data and physiological signals from 8 individuals, including 5 healthy participants and 3 depressed patients, for a maximum of 35 days. Participants were asked to answer a digital questionnaire three times daily, resulting in a total of 334 self-reported mood state samples. Gradient-boosting classification was applied to the collected passive data to categorize 4 mood states in the Valence-Energetic Arousal space. The cross-validation results showed better classification performance compared to a baseline model, which always predicts the majority class. The classifier using passive data had an area under the precision-recall curve of 0.39 (SD = 0.1) while the baseline had 0.26 (SD = 0.03), suggesting the presence of information in the collected features that support the classification process. The model identified the entropy of the heart rate and the average physical activity in the preceding 8 hours, along with the max normal-to-normal (NN) sinus beat interval and the NN low frequency-high frequency ratio during the questionnaire completion, as the most important features in its analysis. Additionally, the time range of data collection was considered a contextual factor.


Asunto(s)
Afecto , Emociones , Humanos , Proyectos Piloto , Emociones/fisiología , Encuestas y Cuestionarios , Nivel de Alerta/fisiología
8.
Res Dev Disabil ; 143: 104624, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972466

RESUMEN

BACKGROUND: Developmental coordination disorder (DCD) is one of the most prevalent developmental disorders in school-aged children. The mechanisms and etiology underlying DCD remain somewhat unclear. Altered visuomotor adaptation and internal model deficits are discussed in the literature. AIMS: The study aimed to investigate visuomotor adaptation and internal modelling to determine whether and to what extent visuomotor learning might be impaired in children with DCD compared to typically developing children (TD). Further, possible compensatory movements during visuomotor learning were explored. METHODS AND PROCEDURES: Participants were 12 children with DCD (age 12.4 ± 1.8, four female) and 18 age-matched TD (12.3 ± 1.8, five female). Visuomotor learning was measured with the Motor task manager. Compensatory movements were parameterized by spatial and temporal variables. OUTCOMES AND RESULTS: Despite no differences in visuomotor adaptation or internal modelling, significant main effects for group were found in parameters representing movement accuracy, motor speed, and movement variability between DCD and TD. CONCLUSIONS AND IMPLICATIONS: Children with DCD showed comparable performances in visuomotor adaptation and internal modelling to TD. However, movement variability was increased, whereas movement accuracy and motor speed were reduced, suggesting decreased motor acuity in children with DCD.


Asunto(s)
Trastornos de la Destreza Motora , Niño , Humanos , Femenino , Adolescente , Aprendizaje , Movimiento
10.
iScience ; 26(7): 107138, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534173

RESUMEN

Being awake means forming new memories, primarily by strengthening neuronal synapses. The increase in synaptic strength results in increasing neuronal synchronicity, which should result in higher amplitude electroencephalography (EEG) oscillations. This is observed for slow waves during sleep but has not been found for wake oscillations. We hypothesized that this was due to a limitation of spectral power analysis, which does not distinguish between changes in amplitudes from changes in number of occurrences of oscillations. By using cycle-by-cycle analysis instead, we found that theta and alpha oscillation amplitudes increase as much as 30% following 24 h of extended wake. These increases were interrupted during the wake maintenance zone (WMZ), a window just before bedtime when it is difficult to fall asleep. We found that pupil diameter increased during this window, suggesting the ascending arousal system is responsible. In conclusion, wake oscillation amplitudes reflect increased synaptic strength, except during the WMZ.

11.
Sci Rep ; 13(1): 12882, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553387

RESUMEN

Slow waves are an electrophysiological characteristic of non-rapid eye movement sleep and a marker of the restorative function of sleep. In certain pathological conditions, such as different types of epilepsy, slow-wave sleep is affected by epileptiform discharges forming so-called "spike-waves". Previous evidence shows that the overnight change in slope of slow waves during sleep is impaired under these conditions. However, these past studies were performed in a small number of patients, considering only short segments of the recording night. Here, we screened a clinical data set of 39'179 pediatric EEG recordings acquired in the past 25 years (1994-2019) at the University Children's Hospital Zurich and identified 413 recordings of interest. We applied an automated approach based on machine learning to investigate the relationship between sleep and epileptic spikes in this large-scale data set. Our findings show that the overnight change in the slope of slow waves was correlated with the spike-wave index, indicating that the impairment of the net reduction in synaptic strength during sleep is spike dependent.


Asunto(s)
Epilepsia , Sueño de Onda Lenta , Humanos , Niño , Electroencefalografía , Sueño/fisiología
12.
Neurobiol Sleep Circadian Rhythms ; 15: 100098, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37424705

RESUMEN

The sleep EEG mirrors neuronal connectivity, especially during development when the brain undergoes substantial rewiring. As children grow, the slow-wave activity (SWA; 0.75-4.25 Hz) spatial distribution in their sleep EEG changes along a posterior-to-anterior gradient. Topographical SWA markers have been linked to critical neurobehavioral functions, such as motor skills, in school-aged children. However, the relationship between topographical markers in infancy and later behavioral outcomes is still unclear. This study aims to explore reliable indicators of neurodevelopment in infants by analyzing their sleep EEG patterns. Thirty-one 6-month-old infants (15 female) underwent high-density EEG recordings during nighttime sleep. We defined markers based on the topographical distribution of SWA and theta activity, including central/occipital and frontal/occipital ratios and an index derived from local EEG power variability. Linear models were applied to test whether markers relate to concurrent, later, or retrospective behavioral scores, assessed by the parent-reported Ages & Stages Questionnaire at ages 3, 6, 12, and 24 months. Results indicate that the topographical markers of the sleep EEG power in infants were not significantly linked to behavioral development at any age. Further research, such as longitudinal sleep EEG in newborns, is needed to better understand the relationship between these markers and behavioral development and assess their predictive value for individual differences.

13.
Front Psychiatry ; 14: 1055459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377467

RESUMEN

Background: Sleep disturbances are intertwined with the progression and pathophysiology of psychotic symptoms in schizophrenia. Reductions in sleep spindles, a major electrophysiological oscillation during non-rapid eye movement sleep, have been identified in patients with schizophrenia as a potential biomarker representing the impaired integrity of the thalamocortical network. Altered glutamatergic neurotransmission within this network via a hypofunction of the N-methyl-D-aspartate receptor (NMDAR) is one of the hypotheses at the heart of schizophrenia. This pathomechanism and the symptomatology are shared by anti-NMDAR encephalitis (NMDARE), where antibodies specific to the NMDAR induce a reduction of functional NMDAR. However, sleep spindle parameters have yet to be investigated in NMDARE and a comparison of these rare patients with young individuals with schizophrenia and healthy controls (HC) is lacking. This study aims to assess and compare sleep spindles across young patients affected by Childhood-Onset Schizophrenia (COS), Early-Onset Schizophrenia, (EOS), or NMDARE and HC. Further, the potential relationship between sleep spindle parameters in COS and EOS and the duration of the disease is examined. Methods: Sleep EEG data of patients with COS (N = 17), EOS (N = 11), NMDARE (N = 8) aged 7-21 years old, and age- and sex-matched HC (N = 36) were assessed in 17 (COS, EOS) or 5 (NMDARE) electrodes. Sleep spindle parameters (sleep spindle density, maximum amplitude, and sigma power) were analyzed. Results: Central sleep spindle density, maximum amplitude, and sigma power were reduced when comparing all patients with psychosis to all HC. Between patient group comparisons showed no differences in central spindle density but lower central maximum amplitude and sigma power in patients with COS compared to patients with EOS or NMDARE. Assessing the topography of spindle density, it was significantly reduced over 15/17 electrodes in COS, 3/17 in EOS, and 0/5 in NMDARE compared to HC. In the pooled sample of COS and EOS, a longer duration of illness was associated with lower central sigma power. Conclusions: Patients with COS demonstrated more pronounced impairments of sleep spindles compared to patients with EOS and NMDARE. In this sample, there is no strong evidence that changes in NMDAR activity are related to spindle deficits.

14.
J Neurosci Methods ; 391: 109849, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075912

RESUMEN

BACKGROUND: With up to 256 channels, high-density electroencephalography (hd-EEG) has become essential to the sleep research field. The vast amount of data resulting from this magnitude of channels in overnight EEG recordings complicates the removal of artifacts. NEW METHOD: We present a new, semi-automatic artifact removal routine specifically designed for sleep hd-EEG recordings. By employing a graphical user interface (GUI), the user assesses epochs in regard to four sleep quality markers (SQMs). Based on their topography and underlying EEG signal, the user eventually removes artifactual values. To identify artifacts, the user is required to have basic knowledge of the typical (patho-)physiological EEG they are interested in, as well as artifactual EEG. The final output consists of a binary matrix (channels x epochs). Channels affected by artifacts can be restored in afflicted epochs using epoch-wise interpolation, a function included in the online repository. RESULTS: The routine was applied in 54 overnight sleep hd-EEG recordings. The proportion of bad epochs highly depends on the number of channels required to be artifact-free. Between 95% and 100% of bad epochs could be restored using epoch-wise interpolation. We furthermore present a detailed examination of two extreme cases (with few and many artifacts). For both nights, the topography and cyclic pattern of delta power look as expected after artifact removal. COMPARISON WITH EXISTING METHODS: Numerous artifact removal methods exist, yet their scope of application usually targets short wake EEG recordings. The proposed routine provides a transparent, practical, and efficient approach to identify artifacts in overnight sleep hd-EEG recordings. CONCLUSION: This method reliably identifies artifacts simultaneously in all channels and epochs.


Asunto(s)
Electroencefalografía , Sueño , Electroencefalografía/métodos , Artefactos , Procesamiento de Señales Asistido por Computador , Algoritmos
15.
Neuroimage ; 269: 119924, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739104

RESUMEN

Infancy represents a critical period during which thalamocortical brain connections develop and mature. Deviations in the maturation of thalamocortical connectivity are linked to neurodevelopmental disorders. There is a lack of early biomarkers to detect and localize neuromaturational deviations, which can be overcome with mapping through high-density electroencephalography (hdEEG) assessed in sleep. Specifically, slow waves and spindles in non-rapid eye movement (NREM) sleep are generated by the thalamocortical system, and their characteristics, slow wave slope and spindle density, are closely related to neuroplasticity and learning. Spindles are often subdivided into slow (11.0-13.0 Hz) and fast (13.5-16.0 Hz) frequencies, for which not only different functions have been proposed, but for which also distinctive developmental trajectories have been reported across the first years of life. Recent studies further suggest that information processing during sleep underlying sleep-dependent learning is promoted by the temporal coupling of slow waves and spindles, yet slow wave-spindle coupling remains unexplored in infancy. Thus, we evaluated three potential biomarkers: 1) slow wave slope, 2) spindle density, and 3) the temporal coupling of slow waves with spindles. We use hdEEG to first examine the occurrence and spatial distribution of these three EEG features in healthy infants and second to evaluate a predictive relationship with later behavioral outcomes. We report four key findings: First, infants' EEG features appear locally: slow wave slope is maximal in occipital and frontal areas, whereas slow and fast spindle density is most pronounced frontocentrally. Second, slow waves and spindles are temporally coupled in infancy, with maximal coupling strength in the occipital areas of the brain. Third, slow wave slope, fast spindle density, and slow wave-spindle coupling are not associated with concurrent behavioral status (6 months). Fourth, fast spindle density in central and frontocentral regions at age 6 months predicts overall developmental status at age 12 months, and motor skills at age 12 and 24 months. Neither slow wave slope nor slow wave-spindle coupling predict later behavioral development. We further identified spindle frequency as a determinant of slow and fast spindle density, which accordingly, also predicts motor skills at 24 months. Our results propose fast spindle density, or alternatively spindle frequency, as early EEG biomarker for identifying thalamocortical maturation, which can potentially be used for early diagnosis of neurodevelopmental disorders in infants. These findings are in support of a role of sleep spindles in sensorimotor microcircuitry development. A crucial next step will be to evaluate whether early therapeutic interventions may be effective to reverse deviations in identified individuals at risk.


Asunto(s)
Electroencefalografía , Sueño , Lactante , Humanos , Preescolar , Encéfalo , Aprendizaje , Cognición
16.
Sci Rep ; 13(1): 2055, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739318

RESUMEN

Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment.


Asunto(s)
Electroencefalografía , Sueño , Niño , Humanos , Lactante , Preescolar , Encéfalo , Lóbulo Frontal , Padres
17.
Child Neuropsychol ; 29(7): 1109-1127, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36324058

RESUMEN

Working memory is frequently impaired in children with complex congenital heart disease (CHD), but little is known about the functional neuronal correlates. Sleep slow wave activity (SWA; 1-4.5 Hz EEG power) has previously been shown to reliably map neurofunctional networks of cognitive abilities in children with and without neurodevelopmental impairments. This study investigated whether functional networks of working memory abilities are altered in children with complex CHD using EEG recordings during sleep. Twenty-one children with complex CHD (aged 10.9 [SD: 0.3] years) and 17 typically-developing peers (10.5 [0.7] years) completed different working memory tasks and an overnight high-density sleep EEG recording (128 electrodes). The combined working memory score tended to be lower in children with complex CHD (CHD group: -0.44 [1.12], typically-developing group: 0.55 [1.24], d = 0.59, p = .06). The working memory score and sleep SWA of the first hour of deep sleep were correlated over similar brain regions in both groups: Strong positive associations were found over prefrontal and fronto-parietal brain regions - known to be part of the working memory network - and strong negative associations were found over central brain regions. Within these working memory networks, the associations between working memory abilities and sleep SWA (r between -.36 and .58, all p < .03) were not different between the two groups (no interactions, all p > .05). The current findings suggest that sleep SWA reliably maps working memory networks in children with complex CHD and that these functional networks are generally preserved in these patients.


Asunto(s)
Cardiopatías Congénitas , Memoria a Corto Plazo , Humanos , Niño , Memoria a Corto Plazo/fisiología , Sueño/fisiología , Electroencefalografía , Encéfalo , Cardiopatías Congénitas/complicaciones
18.
Dev Med Child Neurol ; 65(5): 701-711, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36069073

RESUMEN

AIM: To investigate the link between sleep disruption and cognitive impairment in childhood epilepsy by studying the effect of epilepsy on sleep homeostasis, as reflected in slow-wave activity (SWA). METHOD: We examined SWA from overnight EEG-polysomnography in 19 children with focal epilepsy (mean [SD] age 11 years 6 months [3 years], range 6 years 6 months-15 years 6 months; 6 females, 13 males) and 18 age- and sex-matched typically developing controls, correlating this with contemporaneous memory consolidation task scores, full-scale IQ, seizures, and focal interictal discharges. RESULTS: Children with epilepsy did not differ significantly from controls in overnight SWA decline (p = 0.12) or gain in memory performance with sleep (p = 0.27). SWA was lower in patients compared to controls in the first hour of non-rapid eye movement sleep (p = 0.021), although not in those who remained seizure-free (p = 0.26). Full-scale IQ did not correlate with measures of SWA in patients or controls. There was no significant difference in SWA measures between focal and non-focal electrodes. INTERPRETATION: Overnight SWA decline is conserved in children with focal epilepsy and may underpin the preservation of sleep-related memory consolidation in this patient group. Reduced early-night SWA may reflect impaired or immature sleep homeostasis in those with a higher seizure burden. WHAT THIS PAPER ADDS: The decline in slow-wave activity (SWA) across the night, reflecting global synaptic downscaling, was preserved in children with focal lesional epilepsies. Sleep benefited memory consolidation in this group of patients, as in typically developing children. Reduced early-night SWA was associated with increased likelihood of a subsequent seizure.


Asunto(s)
Epilepsias Parciales , Epilepsia , Masculino , Femenino , Humanos , Niño , Lactante , Electroencefalografía , Epilepsias Parciales/complicaciones , Epilepsias Parciales/psicología , Convulsiones/complicaciones , Sueño , Epilepsia/complicaciones , Cognición , Homeostasis
19.
BMC Pediatr ; 22(1): 616, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289537

RESUMEN

BACKGROUND: Supplementary treatment options after pediatric severe traumatic brain injury (TBI) are needed to improve neurodevelopmental outcome. Evidence suggests enhancement of brain delta waves via auditory phase-targeted stimulation might support neuronal reorganization, however, this method has never been applied in analgosedated patients on the pediatric intensive care unit (PICU). Therefore, we conducted a feasibility study to investigate this approach: In a first recording phase, we examined feasibility of recording over time and in a second stimulation phase, we applied stimulation to address tolerability and efficacy. METHODS: Pediatric patients (> 12 months of age) with severe TBI were included between May 2019 and August 2021. An electroencephalography (EEG) device capable of automatic delta wave detection and sound delivery through headphones was used to record brain activity and for stimulation (MHSL-SleepBand version 2). Stimulation tolerability was evaluated based on report of nurses, visual inspection of EEG data and clinical signals (heart rate, intracranial pressure), and whether escalation of therapy to reduce intracranial pressure was needed. Stimulation efficacy was investigated by comparing EEG power spectra of active stimulation versus muted stimulation (unpaired t-tests). RESULTS: In total, 4 out of 32 TBI patients admitted to the PICU (12.5%) between 4 and 15 years of age were enrolled in the study. All patients were enrolled in the recording phase and the last one also to the stimulation phase. Recordings started within 5 days after insult and lasted for 1-4 days. Overall, 23-88 h of EEG data per patient were collected. In patient 4, stimulation was enabled for 50 min: No signs of patient stress reactions were observed. Power spectrums between active and muted stimulation were not statistically different (all P > .05). CONCLUSION: Results suggests good feasibility of continuously applying devices needed for auditory stimulation over multiple days in pediatric patients with TBI on PICU. Very preliminary evidence suggests good tolerability of auditory stimuli, but efficacy of auditory stimuli to enhance delta waves remains unclear and requires further investigation. However, only low numbers of severe TBI patients could be enrolled in the study and, thus, future studies should consider an international multicentre approach.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Niño , Humanos , Estimulación Acústica , Estudios de Factibilidad , Lesiones Traumáticas del Encéfalo/terapia , Electroencefalografía/métodos , Cuidados Críticos
20.
J Neurosci ; 42(45): 8569-8586, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36202618

RESUMEN

Human electroencephalographic (EEG) oscillations characterize specific behavioral and vigilance states. The frequency of these oscillations is typically sufficient to distinguish a given state; however, theta oscillations (4-8 Hz) have instead been found in near-opposite conditions of drowsiness during sleep deprivation and alert cognitive control. While the latter has been extensively studied and is often referred to as "frontal midline theta," (fmTheta) the former has been investigated far less but is considered a marker for sleep pressure during wake. In this study we investigated to what extent theta oscillations differed during cognitive tasks and sleep deprivation. We measured high-density EEG in 18 young healthy adults (nine female) performing six tasks under three levels of sleep deprivation. We found both cognitive load and sleep deprivation increased theta power in medial prefrontal cortical areas; however, sleep deprivation caused additional increases in theta in many other, predominantly frontal, areas. The sources of sleep deprivation theta (sdTheta) were task dependent, with a visual-spatial task and short-term memory (STM) task showing the most widespread effects. Notably, theta was highest in supplementary motor areas during passive music listening, and highest in the inferior temporal cortex (responsible for object recognition) during a spatial game. Furthermore, while changes in task performance were correlated with increases in theta during sleep deprivation, this relationship was not specific to the EEG of the same task and did not survive correction for multiple comparisons. Altogether, these results suggest that both during sleep deprivation and cognition theta oscillations may preferentially occur in cortical areas not involved in ongoing behavior.SIGNIFICANCE STATEMENT Electroencephalographic (EEG) research in sleep has often remained separate from research in cognition. This has led to two incompatible interpretations of the function of theta brain oscillations (4-8 Hz): that they reflect local sleep events during sleep deprivation, or that they reflect cognitive processing during tasks. With this study, we found no fundamental differences between theta oscillations during cognition and theta during sleep deprivation that would suggest different functions. Instead, our results indicate that in both cases, theta oscillations are generated by cortical areas not required for ongoing behavior. Therefore, at least in humans, theta may reflect either cortical disengagement or inhibition.


Asunto(s)
Desempeño Psicomotor , Privación de Sueño , Adulto , Femenino , Humanos , Desempeño Psicomotor/fisiología , Electroencefalografía/métodos , Sueño , Cognición/fisiología , Ritmo Teta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...