Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(51): 17770-17778, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36512439

RESUMEN

The analysis of nanoparticle (NP) dynamics in live cell studies by video tracking provides detailed information on their interactions and trafficking in the cells. Although the video analysis is not yet routinely used in NP studies, the equipment suitable for the experiments is already available in most laboratories. Here, we compare trajectory patterns, diffusion coefficients, and particle velocities of NPs in A549 cells with a rather simple experimental setup consisting of a fluorescence microscope and openly available trajectory analysis software. The studied NPs include commercial fluorescent polymeric particles and two subpopulations of PC-3 cell-derived extracellular vesicles (EVs). As bioderived natural nanoparticles, the fluorescence intensities of the EVs limited the recording speed. Therefore, we studied the effect of the recording frame rate and analysis parameters to the trajectory results with bright fluorescent commercial NPs. We show that the trajectory classification and the apparent particle velocities are affected by the recording frame rate, while the diffusion constants stay comparable. The NP trajectory patterns were similar for all NP types and resembled intracellular vesicular transport. Interestingly, the EV movements were faster than the commercial NPs, which contrasts with their physical sizes and may indicate a greater role of the motor proteins in their intracellular transports.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Humanos , Células A549 , Microscopía Fluorescente , Vesículas Extracelulares/metabolismo , Colorantes Fluorescentes/metabolismo
2.
Adv Drug Deliv Rev ; 183: 114141, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149123

RESUMEN

Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.


Asunto(s)
Pulmón , Moco , Sistemas de Liberación de Medicamentos , Humanos , Mucinas/análisis , Mucinas/química , Moco/química , Reología
3.
Adv Healthc Mater ; 11(11): e2102117, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35112802

RESUMEN

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.


Asunto(s)
Antibacterianos , Liposomas , Administración por Inhalación , Aerosoles , Antibacterianos/farmacología , Inhaladores de Polvo Seco , Fucosa , Pulmón , Macrófagos , Tamaño de la Partícula , Polvos
4.
J Mater Chem B ; 10(4): 537-548, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34985094

RESUMEN

The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Lectinas/antagonistas & inhibidores , Liposomas/química , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Biopelículas/efectos de los fármacos , Lectinas/metabolismo , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/metabolismo
5.
Drug Deliv Transl Res ; 11(4): 1766-1778, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101127

RESUMEN

Pulmonary delivery of nanocarriers for novel antimycobacterial compounds is challenging because the aerodynamic properties of nanomaterials are sub-optimal for such purposes. Here, we report the development of dry powder formulations for nanocarriers containing benzothiazinone 043 (BTZ) or levofloxacin (LVX), respectively. The intricacy is to generate dry powder aerosols with adequate aerodynamic properties while maintaining both nanostructural integrity and compound activity until reaching the deeper lung compartments. Microparticles (MPs) were prepared using vibrating mesh spray drying with lactose and leucine as approved excipients for oral inhalation drug products. MP morphologies and sizes were measured using various biophysical techniques including determination of geometric and aerodynamic mean sizes, X-ray diffraction, and confocal and focused ion beam scanning electron microscopy. Differences in the nanocarriers' characteristics influenced the MPs' sizes and shapes, their aerodynamic properties, and, hence, also the fraction available for lung deposition. Spay-dried powders of a BTZ nanosuspension, BTZ-loaded silica nanoparticles (NPs), and LVX-loaded liposomes showed promising respirable fractions, in contrast to zirconyl hydrogen phosphate nanocontainers. While the colloidal stability of silica NPs was improved after spray drying, MPs encapsulating either BTZ nanosuspensions or LVX-loaded liposomes showed the highest respirable fractions and active pharmaceutical ingredient loads. Importantly, for the BTZ nanosuspension, biocompatibility and in vitro uptake by a macrophage model cell line were improved even further after spray drying.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lactosa , Sistemas de Liberación de Medicamentos/métodos , Lactosa/química , Leucina/química , Pulmón/metabolismo , Tamaño de la Partícula , Polvos/química , Polvos/metabolismo
6.
J Antimicrob Chemother ; 76(6): 1472-1479, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712824

RESUMEN

BACKGROUND: Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES: Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS: Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS: PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS: These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Biopelículas , Humanos , Moco , Tobramicina/farmacología
7.
Biomacromolecules ; 20(9): 3504-3512, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31419118

RESUMEN

Mucus is a complex hydrogel that acts as a protective barrier in various parts of the human body. Both composition and structural properties play a crucial role in maintaining barrier properties while dictating diffusion of molecules and (nano)materials. In this study, we compare previously described mucus surrogates with the native human airway and pig intestinal mucus. Oscillatory shear rheology was applied to characterize mucus on the bulk macrorheological level, revealing that the artificial airway surrogate deviates from the elastic-dominant behavior of native mucus samples. We circumvented this limitation through the addition of a cross-linking polymer to the surrogate, adjusting the rheological properties closer to those of native mucus. Applying particle tracking microrheology, we further demonstrated that the mechanical properties at the microscale differ significantly between artificial and native mucus. We conclude that proper characterization of mucus and its surrogates is vital for a reliable investigation of nanoparticle-based mucosal drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucosa Intestinal/química , Moco/química , Nanopartículas/química , Animales , Difusión , Humanos , Hidrogeles/química , Intestinos/química , Reología , Porcinos , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA