Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0122523, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38470029

RESUMEN

We present the whole-genome sequence of four bacterial endophytes associated with German hardneck garlic cloves (Allium sativum L.). Among them, Agrobacterium fabrum and Pantoea agglomerans are associated with plant protection, while Rahnella perminowiae and Stenotrophomonas lactitubi are pathogens. These data will facilitate the identification of genes to improve garlic.

2.
Biochem Mol Biol Educ ; 52(3): 348-358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38400827

RESUMEN

Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and cellular biology to pharmacology. However, because enzyme kinetics involves concepts rarely employed in other areas of biology, it can be challenging for students and researchers. Traditional graphical analysis was replaced by computational analysis, requiring another skill not core to many life sciences curricula. Computational analysis can be time-consuming and difficult in free software (e.g., R) or require costly software (e.g., GraphPad Prism). We present Enzyme Kinetics Analysis (EKA), a web-tool to augment teaching and learning and streamline EKA. EKA is an interactive and free tool for analyzing enzyme kinetic data and improving student learning through simulation, built using R and RStudio's ShinyApps. EKA provides kinetic models (Michaelis-Menten, Hill, simple reversible inhibition models, ternary-complex, and ping-pong) for users to fit experimental data, providing graphical results and statistics. Additionally, EKA enables users to input parameters and create data and graphs, to visualize changes to parameters (e.g., K M or number of measurements). This function is designed for students learning kinetics but also for researchers to design experiments. EKA (enzyme-kinetics.shinyapps.io/enzkinet_webpage/) provides a simple, interactive interface for teachers, students, and researchers to explore enzyme kinetics. It gives researchers the ability to design experiments and analyze data without specific software requirements.


Asunto(s)
Enzimas , Programas Informáticos , Cinética , Enzimas/metabolismo , Humanos , Bioquímica/educación , Internet , Estudiantes , Enseñanza , Curriculum
3.
PLoS One ; 19(2): e0293943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38412159

RESUMEN

Antimicrobial resistance (AMR) is a global threat to human health since infections caused by antimicrobial-resistant bacteria are life-threatening conditions with minimal treatment options. Bacteria become resistant when they develop the ability to overcome the compounds that are meant to kill them, i.e., antibiotics. The increasing number of resistant pathogens worldwide is contrasted by the slow progress in the discovery and production of new antibiotics. About 700,000 global deaths per year are estimated as a result of drug-resistant infections, which could escalate to nearly 10 million by 2050 if we fail to address the AMR challenge. In this study, we collected and isolated bacteria from the environment to screen for antibiotic resistance. We identified several bacteria that showed resistance to multiple clinically relevant antibiotics when tested in antibiotic susceptibility disk assays. We also found that two strains, identified as Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838 via whole genome sequencing and annotation, produce bactericidal compounds against both Gram-positive and Gram-negative bacteria in disc-diffusion inhibitory assays. We mined the two strains' whole-genome sequences to gain more information and insights into the antibiotic resistance and production by these bacteria. Subsequently, we aim to isolate, identify, and further characterize the novel antibiotic compounds detected in our assays and bioinformatics analysis.


Asunto(s)
Antibacterianos , Antiinfecciosos , Pantoea , Humanos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias Grampositivas , Pseudomonas/genética , Secuenciación Completa del Genoma
4.
Microbiol Resour Announc ; 12(12): e0065023, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37921458

RESUMEN

We present the whole-genome sequences of five endophytic bacteria isolated from Musa balbisiana seeds. These strains represent five different genera: Bacillus, Brachybacterium, Enterobacter, Enterococcus, and Pantoea. Among these, three genera (Bacillus, Pantoea, and Enterobacter) were previously recognized for their antagonistic effects against Fusarium wilt, a highly destructive disease that affects banana plants.

5.
BMC Res Notes ; 16(1): 114, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349752

RESUMEN

OBJECTIVE: Antibiotic resistant infections have become a global health crisis causing 1.2 million deaths worldwide in 2019 [1]. In a previous study, we identified a bacterium from a rare genus, Yimella, and found in an initial antibiotic screening that they produce broad-spectrum bactericidal compounds [2]. Herein, we focus on the characterization of these potential novel antimicrobial compounds produced by Yimella sp. RIT 621. RESULTS: We used solid-phase extraction and C18 reverse-phase chromatography to isolate the antibiotic-active compounds found in organic extracts from liquid cultures of Yimella sp. RIT 621. We tracked the antimicrobial activity by testing the extracts in disc diffusion inhibitory assays and observed its increase after each purification stage.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Cromatografía
6.
Microbiol Resour Announc ; 12(4): e0123222, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920211

RESUMEN

Here, we report the genome assemblies of 11 endophytic bacteria, isolated from poison ivy vine (Toxicodendron radicans). Five species belonging to the genus Pseudomonas, two species of Curtobacterium, one strain of Pantoea agglomerans, and one species from the Bacillus, Cellulomonas, and Enterobacter genera were isolated from the interior tissue of poison ivy.

7.
Plants (Basel) ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501292

RESUMEN

The invasive species Lonicera maackii (Amur Honeysuckle) is an increasing problem sweeping from the eastern United States toward the west, impacting normal forest development and animal survival across multiple taxa. Little is known about the genomics of this species, although a related invasive, Lonicera japonica, has been sequenced. Understanding the genomic foundation of the Lonicera maackii species could help us understand the biochemistry and life history that are the underpinnings of invasive success, as well as potential vulnerabilities and strengths which could guide research and development to control its spread. Here we present a draft, but high-quality, short-read whole-genome sequence, assembly, and annotation of Lonicera maackii, demonstrating that inexpensive and rapid short-read technologies can be successfully used in invasive species research. Despite being a short-read assembly, the genome length (7.93 × 108) and completeness (estimated as 90.2-92.1% by BUSCO and Merqury) are close to the previously published chromosome-level sequencing of L. japonica. No bias, by means of a Gene Ontology analysis, was identified among missing BUSCOs. A duplication of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase gene in both Lonicera species is identified, and the potential impact on controlling these invasive species is discussed. Future prospects for a diversity analysis of invasive species is also discussed.

8.
Microbiol Resour Announc ; 11(10): e0062722, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36094179

RESUMEN

We report the isolation, identification, and assemblies of three antibiotic-producing soil bacteria (Staphylococcus pasteuri, Peribacillus butanolivorans, and Micrococcus yunnanensis) that inhibit the growth of Neisseria commensals in coculture. With pathogenic Neisseria strains becoming increasingly resistant to antibiotics, bioprospecting for novel antimicrobials using commensal relatives may facilitate discovery of clinically useful drugs.

9.
Microbiol Resour Announc ; 11(10): e0075722, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36094212

RESUMEN

We report the whole-genome sequence and annotation of two antibiotic-resistant bacteria, Enterobacter roggenkampii RIT 834 and Acinetobacter pittii RIT 835, isolated from disposed masks. We found that these strains are resistant to five of seven commonly used antibiotics and that they produce bactericidal compounds against Escherichia coli.

10.
Microorganisms ; 10(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014041

RESUMEN

The widespread use of plastics has led to their increasing presence in the environment and subsequent pollution. Some microorganisms degrade plastics in natural ecosystems and the associated metabolic pathways can be studied to understand the degradation mechanisms. Polystyrene (PS) is one of the more recalcitrant plastic polymers that is degraded by only a few bacteria. Exiguobacterium is a genus of Gram-positive poly-extremophilic bacteria known to degrade PS, thus being of biotechnological interest, but its biochemical mechanisms of degradation have not yet been elucidated. Based solely on genome annotation, we initially proposed PS degradation by Exiguobacterium sp. RIT 594 via depolymerization and epoxidation catalyzed by a ring epoxidase. However, Fourier transform infrared (FTIR) spectroscopy analysis revealed an increase of carboxyl and hydroxyl groups with biodegradation, as well as of unconjugated C-C double bonds, both consistent with dearomatization of the styrene ring. This excludes any aerobic pathways involving side chain epoxidation and/or hydroxylation. Subsequent experiments confirmed that molecular oxygen is critical to PS degradation by RIT 594 because degradation ceased under oxygen-deprived conditions. Our studies suggest that styrene breakdown by this bacterium occurs via the sequential action of two enzymes encoded in the genome: an orphan aromatic ring-cleaving dioxygenase and a hydrolase.

11.
PLoS One ; 17(1): e0262370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025928

RESUMEN

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 µg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Neisseria/genética , Antibacterianos/farmacología , Azitromicina/farmacología , Pruebas de Sensibilidad Microbiana , Microbiota/genética , Inhibidores de la Síntesis de la Proteína , ARN Ribosómico 23S/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Ribosomas/genética , Eliminación de Secuencia/genética
12.
J Biomol Struct Dyn ; 40(1): 468-483, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897175

RESUMEN

Oncogenic mutations in the kinase domain of the B-Raf protein have long been associated with cancers involving the MAPK pathway. One constitutive MAPK activating mutation in B-Raf, the V600E (valine to glutamate) replacement occurring adjacent to a site of threonine phosphorylation (T599) occurs in many types of cancer, and in a large percentage of certain cancers, such as melanoma. Because ATP binding activity and the V600E mutation are both known to alter the physical behavior of the activation loop in the B-Raf ATP binding domain, this system is especially amenable to comparative analyses of molecular dynamics simulations modeling various genetic and drug class variants. Here, we employ machine learning enabled identification of functionally conserved protein dynamics to compare how the binding interactions of four B-Raf inhibitors impact the functional loop dynamics controlling ATP activation. We demonstrate that drug development targeting B-Raf has progressively moved towards ATP competitive inhibitors that demonstrate less tendency to mimic the functionally conserved dynamic changes associated with ATP activation and leading to the side effect of hyperactivation (i.e. inducing MAPK activation in non-tumorous cells in the absence of secondary mutation). We compare the functional dynamic impacts of V600E and other sensitizing and drug resistance causing mutations in the regulatory loops of B-Raf, confirming sites of low mutational tolerance in these regions. Lastly, we investigate V600E sensitivity of B-Raf loop dynamics in an evolutionary context, demonstrating that while sensitivity has an ancient origin with primitive eukaryotes, it was also secondarily increased during early jawed vertebrate evolution.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Melanoma , Preparaciones Farmacéuticas , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
13.
J Biomol Struct Dyn ; 40(21): 10978-10996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34286673

RESUMEN

Comparative functional analysis of the dynamic interactions between various Betacoronavirus mutant strains and broadly utilized target proteins such as ACE2 and CD26, is crucial for a more complete understanding of zoonotic spillovers of viruses that cause diseases such as COVID-19. Here, we employ machine learning to replicated sets of nanosecond scale GPU accelerated molecular dynamics simulations to statistically compare and classify atom motions of these target proteins in both the presence and absence of different endemic and emergent strains of the viral receptor binding domain (RBD) of the S spike glycoprotein. A multi-agent classifier successfully identified functional binding dynamics that are evolutionarily conserved from bat CoV-HKU4 to human endemic/emergent strains. Conserved dynamics regions of ACE2 involve both the N-terminal helices, as well as a region of more transient dynamics encompassing residues K353, Q325 and a novel motif AAQPFLL 386-92 that appears to coordinate their dynamic interactions with the viral RBD at N501. We also demonstrate that the functional evolution of Betacoronavirus zoonotic spillovers involving ACE2 interaction dynamics are likely pre-adapted from two precise and stable binding sites involving the viral bat progenitor strain's interaction with CD26 at SAMLI 291-5 and SS 333-334. Our analyses further indicate that the human endemic strains hCoV-HKU1 and hCoV-OC43 have evolved more stable N-terminal helix interactions through enhancement of an interfacing loop region on the viral RBD, whereas the highly transmissible SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1) have evolved more stable viral binding via more focused interactions between the viral N501 and ACE2 K353 alone.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Betacoronavirus , Quirópteros , Glicoproteína de la Espiga del Coronavirus , Zoonosis , Animales , Humanos , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , Quirópteros/virología , Dipeptidil Peptidasa 4 , Simulación de Dinámica Molecular , Peptidil-Dipeptidasa A/química , Unión Proteica , Receptores Virales/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/virología
14.
Microbiol Resour Announc ; 10(48): e0086321, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854720

RESUMEN

We report the isolation, whole-genome sequencing, and annotation of Enterobacter sp. strain RIT 637, Pseudomonas sp. strain RIT 778, and Deinococcus sp. strain RIT 780. Disk diffusion assays using spent medium demonstrated that all bacteria produced bactericidal compounds against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 25923.

15.
BMC Res Notes ; 14(1): 230, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103082

RESUMEN

OBJECTIVE: In order to isolate and identify bacteria that produce potentially novel bactericidal/bacteriostatic compounds, two ponds on the campus of the Rochester Institute of Technology (RIT) were targeted as part of a bioprospecting effort. RESULTS: One of the unique isolates, RIT 452 was identified as Exiguobacterium sp. and subjected to whole-genome sequencing. The genome was assembled and in silico analysis was performed to predict the secondary metabolite gene clusters, which suggested the potential of Exiguobacterium RIT452 for producing antibiotic compounds. Extracts of spent growth media of RIT452 were active in disc diffusion assays performed against four reference strains, two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923). Differential extraction and liquid chromatography was used to fractionate the extracts. Efforts to identify and elucidate the structure of the active compound(s) are still ongoing.


Asunto(s)
Antibacterianos , Exiguobacterium , Antibacterianos/farmacología , Bacterias , Escherichia coli , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
16.
BMC Res Notes ; 14(1): 175, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964980

RESUMEN

OBJECTIVES: To characterize the bacterial community of Wind Cave's Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems. RESULTS: Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR. Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.


Asunto(s)
Agua Subterránea , Transactivadores , Bacterias/genética , Proteínas Bacterianas/genética , Genómica , Proteínas Represoras
17.
Microbiol Resour Announc ; 10(19)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986094

RESUMEN

We report the whole-genome sequence and annotation of 10 endophytic and epiphytic bacteria isolated from the grass Lolium arundinaceum as part of a laboratory exercise in a Fundamentals of Plant Biochemistry and Pathology undergraduate course (BIOL403) at the Rochester Institute of Technology in Rochester, New York.

18.
J Biol Chem ; 296: 100438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610552

RESUMEN

For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in "omics," chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid-derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure-function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.


Asunto(s)
Aminoácidos/metabolismo , Antiinfecciosos/farmacología , Plantas/metabolismo , Desarrollo de Medicamentos , Fitoquímicos/farmacología
19.
bioRxiv ; 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33501438

RESUMEN

Comparative functional analysis of the dynamic interactions between various Betacoronavirus mutant strains and broadly utilized target proteins such as ACE2 and CD26, is crucial for a more complete understanding of zoonotic spillovers of viruses that cause diseases such as COVID-19. Here, we employ machine learning to replicated sets of nanosecond scale GPU accelerated molecular dynamics simulations to statistically compare and classify atom motions of these target proteins in both the presence and absence of different endemic and emergent strains of the viral receptor binding domain (RBD) of the S spike glycoprotein. Machine learning was used to identify functional binding dynamics that are evolutionarily conserved from bat CoV-HKU4 to human endemic/emergent strains. Conserved dynamics regions of ACE2 involve both the N-terminal helices, as well as a region of more transient dynamics encompassing K353, Q325 and a novel motif AAQPFLL 386-92 that appears to coordinate their dynamic interactions with the viral RBD at N501. We also demonstrate that the functional evolution of Betacoronavirus zoonotic spillovers involving ACE2 interaction dynamics are likely pre-adapted from two precise and stable binding sites involving the viral bat progenitor strain's interaction with CD26 at SAMLI 291-5 and SS 333-334. Our analyses further indicate that the human endemic strains hCoV-HKU1 and hCoV-OC43 have evolved more stable N-terminal helix interactions through enhancement of an interfacing loop region on the viral RBD, whereas the highly transmissible SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1) have evolved more stable viral binding via more focused interactions between the viral N501 and ACE2 K353 alone.

20.
Microorganisms ; 8(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212916

RESUMEN

Antimicrobial resistance (AMR) is one of the biggest challenges of the 21st century, and biofilm formation enables bacteria to resist antibiotic at much higher concentrations than planktonic cells. Earlier, we showed that the Gram-negative Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669 (closely related to C. freundii NBRC 12681) from infected spotted turtles (Clemmys guttata), formed biofilms and upregulated toxin expression on plastic surfaces, and were predicted to possess multiple antibiotic resistance genes. Here, we show that they each resist several antibiotics in the planktonic phase, but were susceptible to neomycin, and high concentrations of tetracycline and cotrimoxazole. The susceptibility of their biofilms to neomycin and cotrimoxazole was tested using the Calgary device. For A. hydrophila, the minimum inhibitory concentration (MIC) = 500-1000, and the minimum biofilm eradication concentration (MBEC) > 1000 µg/mL, using cotrimoxazole, and MIC = 32.3-62.5, and MBEC > 1000 µg/mL, using neomycin. For C. freundii MIC = 7.8-15.6, and, MBEC > 1000 µg/mL, using cotrimoxazole, and MIC = 7.8, and MBEC > 1000 µg/mL, using neomycin. Both A. hydrophila and C. portucalensis activated an acyl homoserine lactone (AHL) dependent biosensor, suggesting that quorum sensing could mediate biofilm formation. Their multidrug resistance in the planktonic form, and weak biofilm eradication even with neomycin and cotrimoxazole, indicate that A. hydrophila and C. portucalensis are potential zoonotic pathogens, with risks for patients living with implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...