Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618959

RESUMEN

Administration of anti-RhD immunoglobulin (Ig) to decrease maternal alloimmunization (antibody-mediated immune suppression [AMIS]) was a landmark clinical development. However, IgG has potent immune-stimulatory effects in other settings (antibody-mediated immune enhancement [AMIE]). The dominant thinking has been that IgG causes AMIS for antigens on RBCs but AMIE for soluble antigens. However, we have recently reported that IgG against RBC antigens can cause either AMIS or AMIE as a function of an IgG subclass. Recent advances in mechanistic understanding have demonstrated that RBC alloimmunization requires the IFN-α/-ß receptor (IFNAR) and is inhibited by the complement C3 protein. Here, we demonstrate the opposite for AMIE of an RBC alloantigen (IFNAR is not required and C3 enhances). RBC clearance, C3 deposition, and antigen modulation all preceded AMIE, and both CD4+ T cells and marginal zone B cells were required. We detected no significant increase in antigen-specific germinal center B cells, consistent with other studies of RBC alloimmunization that show extrafollicular-like responses. To the best of our knowledge, these findings provide the first evidence of an RBC alloimmunization pathway which is IFNAR independent and C3 dependent, thus further advancing our understanding of RBCs as an immunogen and AMIE as a phenomenon.


Asunto(s)
Complemento C3 , Tejido Linfoide , Animales , Ratones , Linfocitos B , Eritrocitos , Inmunoglobulina G , Interferón-alfa
2.
Vox Sang ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643983

RESUMEN

BACKGROUND AND OBJECTIVES: Platelet transfusions are increasing with medical advances. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. Our study's aim was to develop a novel platelet transfusion model stored in mouse plasma that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detectable in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet-rich plasma (PRP) collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and adenosine diphosphate, agreeable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. CONCLUSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified PRP collection protocol with maximum storage of 1 day for an 'old' unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

3.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38260479

RESUMEN

Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo and during storage in vitro in the blood bank. Here we identify an association between blood donor age, sex, ethnicity and end-of-storage levels of glycolytic metabolites in 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study. Associations were also observed to ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (which we detected in mature RBCs), hexokinase 1, and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP levels, breakdown, and deamination into hypoxanthine were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions. Highlights: Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;RBC PFKP boosts glycolytic fluxes when ATP is low, such as in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.

5.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014145

RESUMEN

BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an "old" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

6.
Nutrients ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892532

RESUMEN

Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.


Asunto(s)
Grasas Insaturadas en la Dieta , Deformación Eritrocítica , Humanos , Femenino , Ratones , Animales , Ratones Endogámicos C57BL , Eritrocitos/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Conservación de la Sangre/métodos
7.
Blood ; 142(12): 1082-1098, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363865

RESUMEN

Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen. The lack of similar interventions that mitigate immune responses toward other RBC alloantigens reflects an incomplete understanding of AMIS mechanisms. AMIS has been previously attributed to rapid antibody-mediated RBC removal, resulting in B-cell ignorance of the RBC alloantigen. However, our data demonstrate that antibody-mediated RBC removal can enhance de novo alloimmunization. In contrast, inclusion of antibodies that possess the ability to rapidly remove the target antigen in the absence of detectable RBC clearance can convert an augmented antibody response to AMIS. These results suggest that the ability of antibodies to remove target antigens from the RBC surface can trigger AMIS in situations in which enhanced immunity may otherwise occur. In doing so, these results hold promise in identifying key antibody characteristics that can drive AMIS, thereby facilitating the design of AMIS approaches toward other RBC antigens to eliminate all forms of HDFN.


Asunto(s)
Eritroblastosis Fetal , Eritrocitos , Femenino , Recién Nacido , Humanos , Eritrocitos/metabolismo , Anticuerpos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Globulina Inmune rho(D) , Isoantígenos , Isoanticuerpos
8.
Haematologica ; 108(10): 2639-2651, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078267

RESUMEN

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.


Asunto(s)
Isoanticuerpos , Reticulocitos , Humanos , Ratones , Animales , Donantes de Sangre , Eritrocitos , Factores de Riesgo
9.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747702

RESUMEN

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increase RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.

10.
Blood ; 141(21): 2642-2653, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36638335

RESUMEN

Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.


Asunto(s)
Transfusión de Eritrocitos , Isoanticuerpos , Transfusión de Eritrocitos/efectos adversos , Eritrocitos , Antígenos , Isoantígenos , Inmunización
11.
Transfusion ; 63(3): 457-462, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708051

RESUMEN

INTRODUCTION: The impact of blood storage on red blood cell (RBC) alloimmunization remains controversial, with some studies suggesting enhancement of RBC-induced alloantibody production and others failing to observe any impact of storage on alloantibody formation. Since evaluation of storage on RBC alloimmunization in patients has examined antibody formation against a broad range of alloantigens, it remains possible that different clinical outcomes reflect a variable impact of storage on alloimmunization to specific antigens. METHODS: RBCs expressing two distinct model antigens, HEL-OVA-Duffy (HOD) and KEL, separately or together (HOD × KEL), were stored for 0, 8, or 14 days, followed by detection of antigen levels prior to transfusion. Transfused donor RBC survival was assessed within 24 h of transfusion, while IgM and IgG antibody production were assessed 5 and 14 days after transfusion. RESULTS: Stored HOD or KEL RBCs retained similar HEL or KEL antigen levels, respectively, as fresh RBCs, but did exhibit enhanced RBC clearance with increased storage age. Storage enhanced IgG antibody formation against HOD, while the oppositive outcome occurred following transfusion of stored KEL RBCs. The distinct impact of storage on HOD or KEL alloimmunization did not appear to reflect intrinsic differences between HOD or KEL RBCs, as transfusion of stored HOD × KEL RBCs resulted in increased IgG anti-HOD antibody development and reduced IgG anti-KEL antibody formation. CONCLUSIONS: These data demonstrate a dichotomous impact of storage on immunization to distinct RBC antigens, offering a possible explanation for inconsistent clinical experience and the need for additional studies on the relationship between RBC storage and alloimmunization.


Asunto(s)
Antígenos , Transfusión de Eritrocitos , Ratones , Animales , Transfusión de Eritrocitos/efectos adversos , Eritrocitos , Isoantígenos , Isoanticuerpos , Inmunoglobulina G
12.
Transfusion ; 63(1): 239-248, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436200

RESUMEN

BACKGROUND: Transgenic mice expressing RBC specific antigens are widely used in mechanistic studies of RBC alloimmunization. Existing RBC donor strains have random transgene integration, potentially disrupting host elements that can confound biological interpretation. STUDY DESIGN AND METHODS: Integration site and genomic alterations were characterized by both targeted locus amplification and congenic backcrossing in the five most commonly used RBC alloantigen donor strains (KEL-K2hi , KEL-K2med , and KEL-K2lo , and KEL-K1). A targeted transgenic approach was developed to allow RBC specific transgene expression from a safe harbor locus (ROSA26). Alloimmune responses were assessed by transfusing alloantigen expressing RBCs into wild-type recipients and measuring alloantibodies by flow cytometry. RESULTS/FINDINGS: Four of the five analyzed strains had at least one gene disrupted by the transgene integration but none of the disrupted genes are known to be involved in RBC biology. The integration of KEL-K2med potentially altered the immunological properties of RBCs, although the biological significance of the observed changes is unclear. The ROSA26 targeted approach resulted in a single copy of the transgene that maintains RBC specific expression without random disruption of genomic elements. CONCLUSION: These findings provide a detailed characterization of genomic disruption by transgene integration found in commonly used RBC donor strains that is relevant to numerous previous publications as well as future studies. With the possible exception of KEL-K2med , transgene integration is not predicted to affect RBC biology in existing models, and new models can avoid this concern using the described targeted transgenic approach.


Asunto(s)
Antígenos de Grupos Sanguíneos , Eritrocitos , Isoanticuerpos , Animales , Ratones , Eritrocitos/inmunología , Isoanticuerpos/sangre , Ratones Endogámicos C57BL , Ratones Transgénicos , Transgenes/genética , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/inmunología
17.
Front Immunol ; 13: 972723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189253

RESUMEN

Passive immunization with anti-D can prevent maternal alloimmunization to RhD thereby preventing hemolytic disease of the fetus and newborn. Unexpectedly, anti-D fails in some cases and some monoclonal anti-D preparations paradoxically enhances alloimmunization. The underlying mechanisms modulating humoral alloimmunization by anti-D are unknown. We previously reported that IgG antibody subclasses differentially regulate alloimmunity in response to red blood cell (RBC) transfusions in a mouse model; in particular, IgG2c significantly enhanced RBC alloantibody responses. Initial mechanistic studies revealed that IgG2c:RBC immune complexes were preferentially consumed by the splenic dendritic cell (DC) subsets that play a role in RBC alloimmunization. The deletion of activating Fc-gamma receptors (FcγRs) (i.e., FcγRI, FcγRIII, and FcγRIV) on DCs abrogated IgG2c-mediated enhanced alloimmunization. Because DCs express high levels of FcγRIV, which has high affinity for the IgG2c subclass, we hypothesized that FcγRIV was required for enhanced alloimmunization. To test this hypothesis, knockout mice and blocking antibodies were used to manipulate FcγR expression. The data presented herein demonstrate that FcγRIV, but not FcγRI or FcγRIII, is required for IgG2c-mediated enhancement of RBC alloantibody production. Additionally, FcγRI is alone sufficient for IgG2c-mediated RBC clearance but not for increased alloimmunization, demonstrating that RBC clearance can occur without inducing alloimmunization. Together, these data, combined with prior observations, support the hypothesis that passive immunization with an RBC-specific IgG2c antibody increases RBC alloantibody production through FcγRIV ligation on splenic conventional DCs (cDCs). This raises the question of whether standardizing antibody subclasses in immunoprophylaxis preparations is desirable and suggests which subclasses may be optimal for generating monoclonal anti-D therapeutics.


Asunto(s)
Anemia Hemolítica Autoinmune , Complejo Antígeno-Anticuerpo , Animales , Anticuerpos Bloqueadores , Inmunoglobulina G , Isoanticuerpos , Ratones , Ratones Noqueados
18.
Front Immunol ; 13: 972127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311777

RESUMEN

Failure of immune tolerance can lead to autoantibody production resulting in autoimmune diseases, a broad spectrum of organ-specific or systemic disorders. Immune tolerance mechanisms regulate autoreactive T and B cells, yet some lymphocytes escape and promote autoantibody production. CD4+ T cell dysregulation, characterized by decreased or impaired regulatory cells (Tregs) and/or accumulation of memory and effector T cells such as TH17, plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody (ANAs) testing is used as a first step for the diagnosis of autoimmune disorders, although most ANA-positive individuals do not have nor will develop an autoimmune disease. Studying the differences of T cell compartment among healthy blood donors, ANA-negative patients and ANA-positive patients, in which loss of tolerance have not led to autoimmunity, may improve our understanding on how tolerance mechanisms fail. Herein, we report that ANA-positive patients exhibit a distinct distribution of T cell subsets: significantly reduced frequencies of recent thymic emigrants (RTE) and naïve T cells, and significantly increased frequencies of central memory T cells, TH2 and TH17 cells; modulations within the T cell compartment are most profound within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive patients are metabolically active, as determined by a significant increase in mTORC1 and mTORC2 signals, compared to ANA-negative patients and healthy blood donors. No significant impairment of Treg numbers or pro-inflammatory cytokine production was observed. These results identify a unique T cell signature associated with autoantibody production in the absence of autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T CD4-Positivos , Humanos , Adulto Joven , Subgrupos de Linfocitos T , Linfocitos T Reguladores , Autoinmunidad
19.
Br J Haematol ; 198(3): 574-586, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670632

RESUMEN

Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response. We evaluated blood samples from more than 100 patients with SCD and found elevated frequencies of mitochondria in reticulocytes and mature RBCs, as compared to healthy blood donors. The presence of mitochondria in mature RBCs was confirmed by flow cytometry, electron microscopy, and proteomic analysis. The mitochondria in mature RBCs were metabolically competent, as determined by enzymatic activities and elevated levels of mitochondria-derived metabolites. Metabolically-active mitochondria in RBCs may increase oxidative stress, which could facilitate and/or exacerbate SCD complications. Coculture of mitochondria-positive RBCs with neutrophils induced production of type 1 interferons, which are known to increase RBC alloimmunization rates. These data demonstrate that mitochondria retained in mature RBCs are functional and can elicit immune responses, suggesting that inappropriate retention of mitochondria in RBCs may play an underappreciated role in SCD complications and be an RBC alloimmunization risk factor.


Asunto(s)
Anemia de Células Falciformes , Proteómica , Eritrocitos/metabolismo , Hemólisis , Humanos , Mitocondrias
20.
Front Physiol ; 13: 868578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557972

RESUMEN

Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...