Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(21): 5600-5606, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38758029

RESUMEN

In recent years, hydrogen bonding (H bonding) as an intramolecular locking strategy has been proposed to enhance photoluminescence, color purity, and photostability in thermally activated delayed fluorescence (TADF) materials. Rigidification as a design strategy is particularly relevant when using electron-deficient N-heterocycles as electron acceptors, because these materials often suffer from poor performance as orange to near-infrared emitters as a result of the energy gap law. To critically evaluate the presence of H bonding in such materials, two TADF-active donor-acceptor dyads, ACR-DQ and ACR-PQ, were synthesized. Despite their potential sites for intramolecular H bonding and emissions spanning yellow to deep red, computational analyses (including frequency, natural bond orbital, non-covalent interaction, and potential energy surface assessments) and crystal structure examinations collectively suggest the absence of H bonding in these materials. Our results indicate that invoking intramolecular H bonding should be done with caution in the design of rigidified TADF materials.

2.
Angew Chem Int Ed Engl ; 63(17): e202400712, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38439710

RESUMEN

By combining bioimaging and photodynamic therapy (PDT), it is possible to treat cancer through a theranostic approach with targeted action for minimum invasiveness and side effects. Thermally activated delayed fluorescence (TADF) probes have gained recent interest in theranostics due to their ability to generate singlet oxygen (1O2) while providing delayed emission that can be used in time-gated imaging. However, it is still challenging to design systems that simultaneously show (1) high contrast for imaging, (2) low dark toxicity but high phototoxicity and (3) tunable biological uptake. Here, we circumvent shortcomings of TADF systems by designing block copolymers and their corresponding semiconducting polymer dots (Pdots) that encapsulate a TADF dye in the core and expose an additional boron-dipyrromethene (BODIPY) oxygen sensitizer in the corona. This architecture provides orange-red luminescent particles (ΦPL up to 18 %) that can efficiently promote PDT (1O2 QY=42 %) of HeLa cells with very low photosensitizer loading (IC50 ~0.05-0.13 µg/mL after 30 min). Additionally, we design Pdots with tunable cellular uptake but similar PDT efficiencies using either polyethylene glycol or guanidinium-based coronas. Finally, we demonstrate that these Pdots can be used for time-gated imaging to effectively filter out background fluorescence from biological samples and improve image contrast.


Asunto(s)
Fotoquimioterapia , Humanos , Células HeLa , Fluorescencia , Línea Celular Tumoral , Polímeros , Fármacos Fotosensibilizantes/farmacología , Colorantes Fluorescentes
5.
Angew Chem Int Ed Engl ; 63(12): e202319089, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38277401

RESUMEN

Purely organic materials exhibiting room temperature phosphorescence (RTP) are promising candidates for oxygen sensors and information encryption owing to their cost-effective and environmentally friendly nature. Herein, we report a bimolecular RTP system where DTBU acts as the guest and TBBU serves as the host. In contrast to previously reported results, we find that both pure DTBU and TBBU do not exhibit RTP in the solid state even under N2 atmosphere. A DTBU/TBBU system with a low doping ratio (0.1 mol %) exhibits persistent yellowish-green afterglow with a lifetime of 340 ms and is highly sensitive to oxygen. A DTBU/TBBU system with a higher doping ratio (10 mol %) maintains a phosphorescence lifetime of 179 ms under air. Applications of DTBU/TBBU at varied doping ratios in both oxygen sensing and information encryption are demonstrated. We propose that the T1 state of TBBU acts as an energy transfer intermediate between Tn and T1 of DTBU, ultimately leading to the generation of persistent RTP. Overall, this work demonstrates the critical importance of material purity in the design of RTP systems, and how an understanding of host-guest doping enables their photophysical properties to be precisely tuned.

6.
Faraday Discuss ; 250(0): 181-191, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37975289

RESUMEN

Heptazine-based materials have recently emerged as a promising motif for thermally activated delayed fluorescence, as their near-zero or negative singlet-triplet energy gaps enable extremely fast reverse intersystem crossing (rISC) rates. Another method for achieving a high rate of rISC is through the use of highly symmetric emitters, which benefit from energy-level degeneracies and a high density of states. Here, we investigate the effect of combining these two design strategies on the excited-state dynamics of C3-symmetric emitters containing heptazine cores. We find that in two of the four emitters studied, the S1 state has a high degree of locally excited (LE) character with density on the heptazine moiety, preventing excited-state localization and a loss of symmetry in the energy-minimized S1 geometry. Surprisingly, these symmetric molecules still suffer from a loss of density of triplet states below the S1 state. Overall, we find that maintaining C3 symmetry will not necessarily maintain density of states, but that heptazine-based materials with LE S1 states still benefit from maximized rISC rates via increased spin-orbit coupling with low-lying charge-transfer triplet states and exhibit advantageous photophysical properties, such as near-unity photoluminescence quantum yields and high colour purity.

7.
Chemistry ; 30(4): e202302861, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38015005

RESUMEN

Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.

8.
ACS Appl Mater Interfaces ; 15(48): 55456-55465, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37983537

RESUMEN

Semiconducting polymer dots (Pdots) are brightly fluorescent nanoparticles of growing interest for bioanalysis and imaging. A recurring challenge with these materials is obtaining robust physical and colloidal stability and low nonspecific binding. Here, we prepared and characterized Pdots with bovine serum albumin (BSA) as the stabilizing agent (BSA-Pdots) instead of a more conventionally used amphiphilic polymer, both without and with cross-linking of the protein using glutaraldehyde (BSA(GA)-Pdots) or disuccinimidyl glutarate. Characterization included fluorescence properties; colloidal stability as a function of pH, ionic strength, and solvent perturbation; shape retention and hardness; and nonspecific binding with common assay substrates, fixed cells, and live cells. These properties were contrasted with the same properties for amphiphilic polymer-stabilized Pdots and silica-coated Pdots. On balance, the BSA-stabilized Pdots were similar or more favorable in their properties, with BSA(GA)-Pdots being especially advantageous. Bioconjugation of the BSA-stabilized Pdots was possible using amine-reactive active-ester chemistry, including biotinylation and bioorthogonal functionalization for immunoconjugation via tetrazine-strained-alkene click chemistry. These approaches were used for selective fluorescent labeling of cells based on ligand-receptor and antibody-antigen binding, respectively. Overall, direct BSA stabilization is a very promising strategy for preparing Pdots with improved physical and colloidal stability, reduced nonspecific interactions, and utility for in vitro diagnostics and other bioanalyses and imaging.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Semiconductores , Polímeros/química , Albúmina Sérica , Fluorescencia , Colorantes , Albúmina Sérica Bovina , Puntos Cuánticos/química
9.
Org Lett ; 25(43): 7791-7795, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37862585

RESUMEN

Multiple resonance thermally activated delayed fluorescent (MR-TADF) materials offer higher color purity than conventional TADF materials but suffer from aggregation-caused quenching (ACQ) and rarely exhibit red emission. Herein, two malononitrile-substituted emitters are synthesized from a quinolino[3,2,1-de]acridine-5,9-dione (QAO) MR-TADF precursor. Both materials maintain MR-TADF, while they display red-shifted fluorescence. They also overcome ACQ, displaying enhanced emission upon aggregation in solution and forming red-emissive J-aggregates in the solid state with photoluminescent quantum yields of 9 and 11%.

10.
J Am Chem Soc ; 145(33): 18366-18381, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556344

RESUMEN

Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.

11.
Angew Chem Int Ed Engl ; 62(32): e202301186, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37189285

RESUMEN

Artificial lighting currently consumes approximately one-fifth of global electricity production. Organic emitters with white persistent RTP have potential for applications in energy-efficient lighting technologies, due to their ability to harvest both singlet and triplet excitons. Compared to heavy metal phosphorescent materials, they have significant advantages in cost, processability, and reduced toxicity. Phosphorescence efficiency can be improved by introducing heteroatoms, heavy atoms, or by incorporating luminophores within a rigid matrix. White-light emission can be achieved by tuning the ratio of fluorescence to phosphorescence intensity or by pure phosphorescence with a broad emission spectrum. This review summarizes recent advances in the design of purely organic RTP materials with white-light emission, describing single-component and host-guest systems. White phosphorescent carbon dots and representative applications of white-light RTP materials are also introduced.

12.
J Org Chem ; 88(7): 4224-4233, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36920272

RESUMEN

The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.

13.
Chemistry ; 29(18): e202203585, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36806222

RESUMEN

Three donor-acceptor compounds based on the imidazo-pyrazine-5,6-dicarbonitrile (IPDC) acceptor were synthesized. The IPDC emitters exhibit blue to near-infrared (NIR) emission with up to 54 % photoluminescent quantum yield. 9,9-Dimethyl-9,10-dihydroacridine (ACR), phenoxazine (POX), and phenothiazine (PTZ) served as electron donors. IPDC-POX displayed NIR emission in toluene solution, while showing room-temperature phosphorescence in the solid state. IPDC-ACR exhibited yellow thermally activated delayed fluorescence. Interestingly, dual-emissive behavior as well as excitation-dependent thermally activated delayed fluorescence (TADF) was found for IPDC-PTZ, arising from the two conformers of phenothiazine derivatives. Overall, this work describes a novel strong electron acceptor from the fusion of imidazole, pyrazine, and nitrile functional groups into one conjugated heterocycle for materials exhibiting NIR emission, TADF, and/or room-temperature phosphorescence (RTP).

14.
J Phys Chem Lett ; 14(2): 310-317, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36602966

RESUMEN

Planarized emitters exhibiting thermally activated delayed fluorescence (TADF) have attracted attention due to their narrow emission spectra, improved photostability, and high quantum yields, but with large singlet-triplet energy gaps (ΔEST) and no heavy atoms, the origin of their TADF remains a subject of debate. Here we prepare two isomeric, coplanar donor-acceptor compounds, with HMAT-2PYM performing dual TADF and room-temperature phosphorescence but with HMAT-4PYM exhibiting only prompt fluorescence. Although conventional TADF design principles suggest that neither isomer should exhibit TADF, we reveal differences in the excited state potential energy surfaces that enable spin-flip processes in only one isomer. We also find that hydrogen bonding is absent between the planar units of these emitters, despite earlier claims of intramolecular hydrogen bonding in similar compounds. Overall, this work demonstrates that potential energy surface analysis is a practical strategy for designing coplanar TADF materials that might otherwise be overlooked by conventional TADF design metrics.

15.
ACS Nano ; 16(9): 13573-13594, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36048428

RESUMEN

Metal-organic frameworks (MOFs) have generated tremendous research interest in the past two decades, due to their high surface areas, tailorable active sites, and tunable structures. Hierarchical porous MOFs (HP-MOFs) with two or more pore systems are particularly attractive, benefiting from improved active site accessibility and enhanced mass diffusivity in applications involving bulk molecules. This review outlines the mechanistic principles used for the rational design of HP-MOFs, current techniques used to measure their hierarchical porosities, as well as their emerging applications. We then critically summarize the current challenges in this field and provide a contemporary perspective on the technological innovations that would address current synthetic challenges in the field of HP-MOFs. The aim of this review is to provide an in-depth understanding of the formation mechanisms, materials chemistry, and structural and chemical properties of HP-MOFs while exploring ways to enhance the performance of current MOF materials in a range of fields.

16.
J Mater Chem B ; 10(34): 6496-6506, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35979840

RESUMEN

Fluorescence imaging of living cells is key to better understanding cellular morphology and biological processes. Water-dispersible nanoparticles exhibiting thermally activated delayed fluorescence (TADF) have recently emerged as useful probes for time-resolved fluorescence imaging (TRFI), circumventing interference from biological autofluorescence. Many existing approaches, however, require TADF dyes with specific structural features, precluding many high-performance TADF materials from being used in this application. Here, we describe the synthesis of two TADF emitters based on the rigid and strongly electron-withdrawing dibenzo[a,c]dipyrido[3,2-h:2'-3'-j]phenazine-12-yl (BPPZ) motif, and demonstrate two parallel approaches for the encapsulation of these fluorophores to yield water-dispersible nanoparticles suitable for TRFI. First, fluorescent polymer dots (Pdots) were formed by dye encapsulation within cell-penetrating amphiphilic copolymers. Glassy organic nanoparticles (g-Odots) were also prepared, giving nanoparticles with higher photoluminescence quantum yields and improved colour purity. Both approaches yielded nanoparticles suitable for imaging, with reasonable uptake and cytotoxicity on the timescale of standard imaging experiments using human cervical (HeLa) and liver (HepG2) cancer cell lines. This work demonstrates two flexible strategies for preparing water-dispersible TADF nanoparticles for TRFI, both of which should be readily adaptable to nearly any existing hydrophobic TADF dye.


Asunto(s)
Nanopartículas , Polímeros , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química , Imagen Óptica/métodos , Polímeros/química , Agua/química
17.
Angew Chem Int Ed Engl ; 61(19): e202116175, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35285999

RESUMEN

Here we calculate T1 →S0 transition energies in nine phosphorescent iridium complexes using the iterative qubit coupled cluster (iQCC) method to determine if quantum simulations have any advantages over classical methods. These simulations would require a gate-based quantum computer with at least 72 fully-connected logical qubits. Since such devices do not yet exist, we demonstrate the iQCC method using a purpose-built quantum simulator on classical hardware. The results are compared to a selection of common DFT functionals, ab initio methods, and empirical data. iQCC is found to match the accuracy of the best DFT functionals, but with a better correlation coefficient, demonstrating that it is better at predicting the structure-property relationship. Results indicate that the iQCC method has the required accuracy to design organometallic complexes when deployed on emerging quantum hardware and sets an industrially relevant target for demonstrating quantum advantage.

18.
Chemistry ; 28(32): e202200552, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35298845

RESUMEN

Surface-tethered polymers are unique molecular architectures that have been recently used in advanced sensors, electronics and biomedical applications. However, techniques for characterizing these materials in their surface-tethered form remain limited. The incorporation of luminescent functionality into these materials has enabled new characterization methods, while also unlocking new applications in optoelectronics, stenography and sensing. Micron-scale photolithography techniques have recently enabled the preparation of high-resolution patterns, as well as architectures with unique photophysical properties. Herein, we provide an overview of the techniques used to prepare luminescent polymer brush materials and their applications in stimuli-responsive sensors, cell adhesion materials, and optoelectronics. We also provide our perspective on the promising future uses of surface-tethered polymers, as well as the short-term challenges and opportunities in the field.


Asunto(s)
Luminiscencia , Polímeros , Electrónica
19.
Chem Sci ; 13(8): 2296-2302, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310486

RESUMEN

Energy transfer (EnT) is a fundamental activation process in visible-light-promoted photocycloaddition reactions. This work describes the performance of imidazoacridine-based TADF materials for visible-light mediated triplet-triplet EnT photocatalysis. The TADF material ACR-IMAC has been discovered as an inexpensive, high-performance organic alternative to the commonly used metal-based photosensitizers for visible-light EnT photocatalysis. The efficiency of ACR-IMAC as a photosensitizer is comparable with Ir-based photosensitizers in both intra- and intermolecular [2 + 2] cycloadditions. ACR-IMAC mediated both dearomative and non-dearomative [2 + 2] cycloadditions in good yields, with high regio- and diastereocontrol. Cyclobutane-containing bi- tri- and tetracylic scaffolds were successfully prepared, with broad tolerance toward functional groups relevant to drug discovery campaigns. Fluorescence quenching experiments, time-correlated single-photon counting, and transient absorption spectroscopy were also conducted to provide insight into the reaction and evidence for an EnT mechanism.

20.
J Am Chem Soc ; 143(41): 16976-16992, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618454

RESUMEN

Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and D < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M-1 cm-1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...